Spaces:
Runtime error
Runtime error
Fabrice-TIERCELIN
commited on
Reuse a working space to make it work
Browse files
app.py
CHANGED
@@ -1,44 +1,59 @@
|
|
1 |
-
import spaces
|
2 |
import torch
|
3 |
import torchaudio
|
4 |
from einops import rearrange
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from stable_audio_tools import get_pretrained_model
|
6 |
from stable_audio_tools.inference.generation import generate_diffusion_cond
|
7 |
-
import os
|
8 |
|
9 |
-
# Load model
|
10 |
-
|
11 |
-
"
|
12 |
-
)
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
"stabilityai/stable-audio-open-1.0", use_auth_token=token, cache_dir=None
|
20 |
-
)
|
21 |
|
22 |
-
|
23 |
-
model =
|
|
|
|
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
"
|
29 |
|
30 |
# Set up text and timing conditioning
|
31 |
conditioning = [{
|
32 |
-
"prompt":
|
33 |
"seconds_start": 0,
|
34 |
"seconds_total": seconds_total
|
35 |
}]
|
|
|
36 |
|
37 |
# Generate stereo audio
|
|
|
38 |
output = generate_diffusion_cond(
|
39 |
model,
|
40 |
-
steps=
|
41 |
-
cfg_scale=
|
42 |
conditioning=conditioning,
|
43 |
sample_size=sample_size,
|
44 |
sigma_min=0.3,
|
@@ -46,37 +61,86 @@ def generate_music(prompt, seconds_total, bpm, genre):
|
|
46 |
sampler_type="dpmpp-3m-sde",
|
47 |
device=device
|
48 |
)
|
|
|
49 |
|
50 |
# Rearrange audio batch to a single sequence
|
51 |
output = rearrange(output, "b d n -> d (b n)")
|
|
|
52 |
|
53 |
-
# Peak normalize, clip, convert to int16
|
54 |
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
"
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
return filename
|
65 |
|
66 |
-
#
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
69 |
inputs=[
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
],
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
],
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
|
|
|
1 |
import torch
|
2 |
import torchaudio
|
3 |
from einops import rearrange
|
4 |
+
import gradio as gr
|
5 |
+
import spaces
|
6 |
+
import os
|
7 |
+
import uuid
|
8 |
+
|
9 |
+
# Importing the model-related functions
|
10 |
from stable_audio_tools import get_pretrained_model
|
11 |
from stable_audio_tools.inference.generation import generate_diffusion_cond
|
|
|
12 |
|
13 |
+
# Load the model outside of the GPU-decorated function
|
14 |
+
def load_model():
|
15 |
+
print("Loading model...")
|
16 |
+
model, model_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
|
17 |
+
print("Model loaded successfully.")
|
18 |
+
return model, model_config
|
19 |
+
|
20 |
+
# Function to set up, generate, and process the audio
|
21 |
+
@spaces.GPU(duration=120) # Allocate GPU only when this function is called
|
22 |
+
def generate_audio(prompt, seconds_total=30, steps=100, cfg_scale=7):
|
23 |
+
print(f"Prompt received: {prompt}")
|
24 |
+
print(f"Settings: Duration={seconds_total}s, Steps={steps}, CFG Scale={cfg_scale}")
|
25 |
+
|
26 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
+
print(f"Using device: {device}")
|
28 |
|
29 |
+
# Fetch the Hugging Face token from the environment variable
|
30 |
+
hf_token = os.getenv('HF_TOKEN')
|
31 |
+
print(f"Hugging Face token: {hf_token}")
|
|
|
|
|
32 |
|
33 |
+
# Use pre-loaded model and configuration
|
34 |
+
model, model_config = load_model()
|
35 |
+
sample_rate = model_config["sample_rate"]
|
36 |
+
sample_size = model_config["sample_size"]
|
37 |
|
38 |
+
print(f"Sample rate: {sample_rate}, Sample size: {sample_size}")
|
39 |
|
40 |
+
model = model.to(device)
|
41 |
+
print("Model moved to device.")
|
42 |
|
43 |
# Set up text and timing conditioning
|
44 |
conditioning = [{
|
45 |
+
"prompt": prompt,
|
46 |
"seconds_start": 0,
|
47 |
"seconds_total": seconds_total
|
48 |
}]
|
49 |
+
print(f"Conditioning: {conditioning}")
|
50 |
|
51 |
# Generate stereo audio
|
52 |
+
print("Generating audio...")
|
53 |
output = generate_diffusion_cond(
|
54 |
model,
|
55 |
+
steps=steps,
|
56 |
+
cfg_scale=cfg_scale,
|
57 |
conditioning=conditioning,
|
58 |
sample_size=sample_size,
|
59 |
sigma_min=0.3,
|
|
|
61 |
sampler_type="dpmpp-3m-sde",
|
62 |
device=device
|
63 |
)
|
64 |
+
print("Audio generated.")
|
65 |
|
66 |
# Rearrange audio batch to a single sequence
|
67 |
output = rearrange(output, "b d n -> d (b n)")
|
68 |
+
print("Audio rearranged.")
|
69 |
|
70 |
+
# Peak normalize, clip, convert to int16
|
71 |
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
72 |
+
print("Audio normalized and converted.")
|
73 |
|
74 |
+
# Generate a unique filename for the output
|
75 |
+
unique_filename = f"output_{uuid.uuid4().hex}.wav"
|
76 |
+
print(f"Saving audio to file: {unique_filename}")
|
77 |
|
78 |
+
# Save to file
|
79 |
+
torchaudio.save(unique_filename, output, sample_rate)
|
80 |
+
print(f"Audio saved: {unique_filename}")
|
|
|
81 |
|
82 |
+
# Return the path to the generated audio file
|
83 |
+
return unique_filename
|
84 |
+
|
85 |
+
# Setting up the Gradio Interface
|
86 |
+
interface = gr.Interface(
|
87 |
+
fn=generate_audio,
|
88 |
inputs=[
|
89 |
+
gr.Textbox(label="Prompt", placeholder="Enter your text prompt here"),
|
90 |
+
gr.Slider(0, 47, value=30, label="Duration in Seconds"),
|
91 |
+
gr.Slider(10, 150, value=100, step=10, label="Number of Diffusion Steps"),
|
92 |
+
gr.Slider(1, 15, value=7, step=0.1, label="CFG Scale")
|
93 |
+
],
|
94 |
+
outputs=gr.Audio(type="filepath", label="Generated Audio"),
|
95 |
+
title="Stable Audio Generator",
|
96 |
+
description="Generate variable-length stereo audio at 44.1kHz from text prompts using Stable Audio Open 1.0.",
|
97 |
+
examples=[
|
98 |
+
[
|
99 |
+
"Create a serene soundscape of a quiet beach at sunset.", # Text prompt
|
100 |
+
|
101 |
+
45, # Duration in Seconds
|
102 |
+
100, # Number of Diffusion Steps
|
103 |
+
10, # CFG Scale
|
104 |
+
],
|
105 |
+
[
|
106 |
+
"Generate an energetic and bustling city street scene with distant traffic and close conversations.", # Text prompt
|
107 |
+
|
108 |
+
30, # Duration in Seconds
|
109 |
+
120, # Number of Diffusion Steps
|
110 |
+
5, # CFG Scale
|
111 |
+
],
|
112 |
+
[
|
113 |
+
"Simulate a forest ambiance with birds chirping and wind rustling through the leaves.", # Text prompt
|
114 |
+
60, # Duration in Seconds
|
115 |
+
140, # Number of Diffusion Steps
|
116 |
+
7.5, # CFG Scale
|
117 |
],
|
118 |
+
[
|
119 |
+
"Recreate a gentle rainfall with distant thunder.", # Text prompt
|
120 |
+
|
121 |
+
35, # Duration in Seconds
|
122 |
+
110, # Number of Diffusion Steps
|
123 |
+
8, # CFG Scale
|
124 |
+
|
125 |
],
|
126 |
+
[
|
127 |
+
"Imagine a jazz cafe environment with soft music and ambient chatter.", # Text prompt
|
128 |
+
25, # Duration in Seconds
|
129 |
+
90, # Number of Diffusion Steps
|
130 |
+
6, # CFG Scale
|
131 |
+
|
132 |
+
],
|
133 |
+
["Rock beat played in a treated studio, session drumming on an acoustic kit.",
|
134 |
+
30, # Duration in Seconds
|
135 |
+
100, # Number of Diffusion Steps
|
136 |
+
7, # CFG Scale
|
137 |
+
|
138 |
+
]
|
139 |
+
])
|
140 |
+
|
141 |
+
|
142 |
+
# Pre-load the model to avoid multiprocessing issues
|
143 |
+
model, model_config = load_model()
|
144 |
|
145 |
+
# Launch the Interface
|
146 |
+
interface.launch()
|