|
|
|
|
|
|
|
import re |
|
import tempfile |
|
|
|
import click |
|
import gradio as gr |
|
import numpy as np |
|
import soundfile as sf |
|
import torchaudio |
|
from cached_path import cached_path |
|
from pydub import AudioSegment |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
try: |
|
import spaces |
|
|
|
USING_SPACES = True |
|
except ImportError: |
|
USING_SPACES = False |
|
|
|
|
|
def gpu_decorator(func): |
|
if USING_SPACES: |
|
return spaces.GPU(func) |
|
else: |
|
return func |
|
|
|
|
|
from f5_tts.model import DiT, UNetT |
|
from f5_tts.infer.utils_infer import ( |
|
load_vocoder, |
|
load_model, |
|
preprocess_ref_audio_text, |
|
infer_process, |
|
remove_silence_for_generated_wav, |
|
save_spectrogram, |
|
) |
|
|
|
vocos = load_vocoder() |
|
|
|
|
|
|
|
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4) |
|
F5TTS_ema_model = load_model( |
|
DiT, F5TTS_model_cfg, str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors")) |
|
) |
|
|
|
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4) |
|
E2TTS_ema_model = load_model( |
|
UNetT, E2TTS_model_cfg, str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors")) |
|
) |
|
|
|
chat_model_state = None |
|
chat_tokenizer_state = None |
|
|
|
|
|
def generate_response(messages, model, tokenizer): |
|
"""Generate response using Qwen""" |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
|
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=512, |
|
temperature=0.7, |
|
top_p=0.95, |
|
) |
|
|
|
generated_ids = [ |
|
output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
|
|
|
|
@gpu_decorator |
|
def infer(ref_audio_orig, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15, speed=1): |
|
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=gr.Info) |
|
|
|
if model == "F5-TTS": |
|
ema_model = F5TTS_ema_model |
|
elif model == "E2-TTS": |
|
ema_model = E2TTS_ema_model |
|
|
|
final_wave, final_sample_rate, combined_spectrogram = infer_process( |
|
ref_audio, |
|
ref_text, |
|
gen_text, |
|
ema_model, |
|
cross_fade_duration=cross_fade_duration, |
|
speed=speed, |
|
show_info=gr.Info, |
|
progress=gr.Progress(), |
|
) |
|
|
|
|
|
if remove_silence: |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: |
|
sf.write(f.name, final_wave, final_sample_rate) |
|
remove_silence_for_generated_wav(f.name) |
|
final_wave, _ = torchaudio.load(f.name) |
|
final_wave = final_wave.squeeze().cpu().numpy() |
|
|
|
|
|
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram: |
|
spectrogram_path = tmp_spectrogram.name |
|
save_spectrogram(combined_spectrogram, spectrogram_path) |
|
|
|
return (final_sample_rate, final_wave), spectrogram_path |
|
|
|
|
|
@gpu_decorator |
|
def generate_podcast( |
|
script, speaker1_name, ref_audio1, ref_text1, speaker2_name, ref_audio2, ref_text2, model, remove_silence |
|
): |
|
|
|
speaker_pattern = re.compile(f"^({re.escape(speaker1_name)}|{re.escape(speaker2_name)}):", re.MULTILINE) |
|
speaker_blocks = speaker_pattern.split(script)[1:] |
|
|
|
generated_audio_segments = [] |
|
|
|
for i in range(0, len(speaker_blocks), 2): |
|
speaker = speaker_blocks[i] |
|
text = speaker_blocks[i + 1].strip() |
|
|
|
|
|
if speaker == speaker1_name: |
|
ref_audio = ref_audio1 |
|
ref_text = ref_text1 |
|
elif speaker == speaker2_name: |
|
ref_audio = ref_audio2 |
|
ref_text = ref_text2 |
|
else: |
|
continue |
|
|
|
|
|
audio, _ = infer(ref_audio, ref_text, text, model, remove_silence) |
|
|
|
|
|
sr, audio_data = audio |
|
|
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file: |
|
sf.write(temp_file.name, audio_data, sr) |
|
audio_segment = AudioSegment.from_wav(temp_file.name) |
|
|
|
generated_audio_segments.append(audio_segment) |
|
|
|
|
|
pause = AudioSegment.silent(duration=500) |
|
generated_audio_segments.append(pause) |
|
|
|
|
|
final_podcast = sum(generated_audio_segments) |
|
|
|
|
|
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file: |
|
podcast_path = temp_file.name |
|
final_podcast.export(podcast_path, format="wav") |
|
|
|
return podcast_path |
|
|
|
|
|
with gr.Blocks() as app_credits: |
|
gr.Markdown(""" |
|
# Credits |
|
|
|
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS) |
|
* [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration |
|
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat |
|
""") |
|
with gr.Blocks() as app_tts: |
|
gr.Markdown("# Batched TTS") |
|
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath") |
|
gen_text_input = gr.Textbox(label="Text to Generate", lines=10) |
|
model_choice = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS") |
|
generate_btn = gr.Button("Synthesize", variant="primary") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
ref_text_input = gr.Textbox( |
|
label="Reference Text", |
|
info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.", |
|
lines=2, |
|
) |
|
remove_silence = gr.Checkbox( |
|
label="Remove Silences", |
|
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.", |
|
value=False, |
|
) |
|
speed_slider = gr.Slider( |
|
label="Speed", |
|
minimum=0.3, |
|
maximum=2.0, |
|
value=1.0, |
|
step=0.1, |
|
info="Adjust the speed of the audio.", |
|
) |
|
cross_fade_duration_slider = gr.Slider( |
|
label="Cross-Fade Duration (s)", |
|
minimum=0.0, |
|
maximum=1.0, |
|
value=0.15, |
|
step=0.01, |
|
info="Set the duration of the cross-fade between audio clips.", |
|
) |
|
|
|
audio_output = gr.Audio(label="Synthesized Audio") |
|
spectrogram_output = gr.Image(label="Spectrogram") |
|
|
|
generate_btn.click( |
|
infer, |
|
inputs=[ |
|
ref_audio_input, |
|
ref_text_input, |
|
gen_text_input, |
|
model_choice, |
|
remove_silence, |
|
cross_fade_duration_slider, |
|
speed_slider, |
|
], |
|
outputs=[audio_output, spectrogram_output], |
|
) |
|
|
|
with gr.Blocks() as app_podcast: |
|
gr.Markdown("# Podcast Generation") |
|
speaker1_name = gr.Textbox(label="Speaker 1 Name") |
|
ref_audio_input1 = gr.Audio(label="Reference Audio (Speaker 1)", type="filepath") |
|
ref_text_input1 = gr.Textbox(label="Reference Text (Speaker 1)", lines=2) |
|
|
|
speaker2_name = gr.Textbox(label="Speaker 2 Name") |
|
ref_audio_input2 = gr.Audio(label="Reference Audio (Speaker 2)", type="filepath") |
|
ref_text_input2 = gr.Textbox(label="Reference Text (Speaker 2)", lines=2) |
|
|
|
script_input = gr.Textbox( |
|
label="Podcast Script", |
|
lines=10, |
|
placeholder="Enter the script with speaker names at the start of each block, e.g.:\nSean: How did you start studying...\n\nMeghan: I came to my interest in technology...\nIt was a long journey...\n\nSean: That's fascinating. Can you elaborate...", |
|
) |
|
|
|
podcast_model_choice = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS") |
|
podcast_remove_silence = gr.Checkbox( |
|
label="Remove Silences", |
|
value=True, |
|
) |
|
generate_podcast_btn = gr.Button("Generate Podcast", variant="primary") |
|
podcast_output = gr.Audio(label="Generated Podcast") |
|
|
|
def podcast_generation( |
|
script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence |
|
): |
|
return generate_podcast( |
|
script, speaker1, ref_audio1, ref_text1, speaker2, ref_audio2, ref_text2, model, remove_silence |
|
) |
|
|
|
generate_podcast_btn.click( |
|
podcast_generation, |
|
inputs=[ |
|
script_input, |
|
speaker1_name, |
|
ref_audio_input1, |
|
ref_text_input1, |
|
speaker2_name, |
|
ref_audio_input2, |
|
ref_text_input2, |
|
podcast_model_choice, |
|
podcast_remove_silence, |
|
], |
|
outputs=podcast_output, |
|
) |
|
|
|
|
|
def parse_speechtypes_text(gen_text): |
|
|
|
pattern = r"\{(.*?)\}" |
|
|
|
|
|
tokens = re.split(pattern, gen_text) |
|
|
|
segments = [] |
|
|
|
current_emotion = "Regular" |
|
|
|
for i in range(len(tokens)): |
|
if i % 2 == 0: |
|
|
|
text = tokens[i].strip() |
|
if text: |
|
segments.append({"emotion": current_emotion, "text": text}) |
|
else: |
|
|
|
emotion = tokens[i].strip() |
|
current_emotion = emotion |
|
|
|
return segments |
|
|
|
|
|
with gr.Blocks() as app_emotional: |
|
|
|
gr.Markdown( |
|
""" |
|
# Multiple Speech-Type Generation |
|
|
|
This section allows you to upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the "Add Speech Type" button. Enter your text in the format shown below, and the system will generate speech using the appropriate emotions. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified. |
|
|
|
**Example Input:** |
|
|
|
{Regular} Hello, I'd like to order a sandwich please. {Surprised} What do you mean you're out of bread? {Sad} I really wanted a sandwich though... {Angry} You know what, darn you and your little shop, you suck! {Whisper} I'll just go back home and cry now. {Shouting} Why me?! |
|
""" |
|
) |
|
|
|
gr.Markdown( |
|
"Upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button." |
|
) |
|
|
|
|
|
with gr.Row(): |
|
regular_name = gr.Textbox(value="Regular", label="Speech Type Name", interactive=False) |
|
regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath") |
|
regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=2) |
|
|
|
|
|
max_speech_types = 100 |
|
speech_type_rows = [] |
|
speech_type_names = [] |
|
speech_type_audios = [] |
|
speech_type_ref_texts = [] |
|
speech_type_delete_btns = [] |
|
|
|
for i in range(max_speech_types - 1): |
|
with gr.Row(visible=False) as row: |
|
name_input = gr.Textbox(label="Speech Type Name") |
|
audio_input = gr.Audio(label="Reference Audio", type="filepath") |
|
ref_text_input = gr.Textbox(label="Reference Text", lines=2) |
|
delete_btn = gr.Button("Delete", variant="secondary") |
|
speech_type_rows.append(row) |
|
speech_type_names.append(name_input) |
|
speech_type_audios.append(audio_input) |
|
speech_type_ref_texts.append(ref_text_input) |
|
speech_type_delete_btns.append(delete_btn) |
|
|
|
|
|
add_speech_type_btn = gr.Button("Add Speech Type") |
|
|
|
|
|
speech_type_count = gr.State(value=0) |
|
|
|
|
|
def add_speech_type_fn(speech_type_count): |
|
if speech_type_count < max_speech_types - 1: |
|
speech_type_count += 1 |
|
|
|
row_updates = [] |
|
for i in range(max_speech_types - 1): |
|
if i < speech_type_count: |
|
row_updates.append(gr.update(visible=True)) |
|
else: |
|
row_updates.append(gr.update()) |
|
else: |
|
|
|
row_updates = [gr.update() for _ in range(max_speech_types - 1)] |
|
return [speech_type_count] + row_updates |
|
|
|
add_speech_type_btn.click( |
|
add_speech_type_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows |
|
) |
|
|
|
|
|
def make_delete_speech_type_fn(index): |
|
def delete_speech_type_fn(speech_type_count): |
|
|
|
row_updates = [] |
|
|
|
for i in range(max_speech_types - 1): |
|
if i == index: |
|
row_updates.append(gr.update(visible=False)) |
|
else: |
|
row_updates.append(gr.update()) |
|
|
|
speech_type_count = max(0, speech_type_count - 1) |
|
|
|
return [speech_type_count] + row_updates |
|
|
|
return delete_speech_type_fn |
|
|
|
|
|
for i, delete_btn in enumerate(speech_type_delete_btns): |
|
delete_fn = make_delete_speech_type_fn(i) |
|
delete_btn.click(delete_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows) |
|
|
|
|
|
gen_text_input_emotional = gr.Textbox(label="Text to Generate", lines=10) |
|
|
|
|
|
model_choice_emotional = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS") |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
remove_silence_emotional = gr.Checkbox( |
|
label="Remove Silences", |
|
value=False, |
|
) |
|
|
|
|
|
generate_emotional_btn = gr.Button("Generate Emotional Speech", variant="primary") |
|
|
|
|
|
audio_output_emotional = gr.Audio(label="Synthesized Audio") |
|
|
|
@gpu_decorator |
|
def generate_emotional_speech( |
|
regular_audio, |
|
regular_ref_text, |
|
gen_text, |
|
*args, |
|
): |
|
num_additional_speech_types = max_speech_types - 1 |
|
speech_type_names_list = args[:num_additional_speech_types] |
|
speech_type_audios_list = args[num_additional_speech_types : 2 * num_additional_speech_types] |
|
speech_type_ref_texts_list = args[2 * num_additional_speech_types : 3 * num_additional_speech_types] |
|
model_choice = args[3 * num_additional_speech_types] |
|
remove_silence = args[3 * num_additional_speech_types + 1] |
|
|
|
|
|
speech_types = {"Regular": {"audio": regular_audio, "ref_text": regular_ref_text}} |
|
|
|
for name_input, audio_input, ref_text_input in zip( |
|
speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list |
|
): |
|
if name_input and audio_input: |
|
speech_types[name_input] = {"audio": audio_input, "ref_text": ref_text_input} |
|
|
|
|
|
segments = parse_speechtypes_text(gen_text) |
|
|
|
|
|
generated_audio_segments = [] |
|
current_emotion = "Regular" |
|
|
|
for segment in segments: |
|
emotion = segment["emotion"] |
|
text = segment["text"] |
|
|
|
if emotion in speech_types: |
|
current_emotion = emotion |
|
else: |
|
|
|
current_emotion = "Regular" |
|
|
|
ref_audio = speech_types[current_emotion]["audio"] |
|
ref_text = speech_types[current_emotion].get("ref_text", "") |
|
|
|
|
|
audio, _ = infer(ref_audio, ref_text, text, model_choice, remove_silence, 0) |
|
sr, audio_data = audio |
|
|
|
generated_audio_segments.append(audio_data) |
|
|
|
|
|
if generated_audio_segments: |
|
final_audio_data = np.concatenate(generated_audio_segments) |
|
return (sr, final_audio_data) |
|
else: |
|
gr.Warning("No audio generated.") |
|
return None |
|
|
|
generate_emotional_btn.click( |
|
generate_emotional_speech, |
|
inputs=[ |
|
regular_audio, |
|
regular_ref_text, |
|
gen_text_input_emotional, |
|
] |
|
+ speech_type_names |
|
+ speech_type_audios |
|
+ speech_type_ref_texts |
|
+ [ |
|
model_choice_emotional, |
|
remove_silence_emotional, |
|
], |
|
outputs=audio_output_emotional, |
|
) |
|
|
|
|
|
def validate_speech_types(gen_text, regular_name, *args): |
|
num_additional_speech_types = max_speech_types - 1 |
|
speech_type_names_list = args[:num_additional_speech_types] |
|
|
|
|
|
speech_types_available = set() |
|
if regular_name: |
|
speech_types_available.add(regular_name) |
|
for name_input in speech_type_names_list: |
|
if name_input: |
|
speech_types_available.add(name_input) |
|
|
|
|
|
segments = parse_speechtypes_text(gen_text) |
|
speech_types_in_text = set(segment["emotion"] for segment in segments) |
|
|
|
|
|
missing_speech_types = speech_types_in_text - speech_types_available |
|
|
|
if missing_speech_types: |
|
|
|
return gr.update(interactive=False) |
|
else: |
|
|
|
return gr.update(interactive=True) |
|
|
|
gen_text_input_emotional.change( |
|
validate_speech_types, |
|
inputs=[gen_text_input_emotional, regular_name] + speech_type_names, |
|
outputs=generate_emotional_btn, |
|
) |
|
|
|
|
|
with gr.Blocks() as app_chat: |
|
gr.Markdown( |
|
""" |
|
# Voice Chat |
|
Have a conversation with an AI using your reference voice! |
|
1. Upload a reference audio clip and optionally its transcript. |
|
2. Load the chat model. |
|
3. Record your message through your microphone. |
|
4. The AI will respond using the reference voice. |
|
""" |
|
) |
|
|
|
load_chat_model_btn = gr.Button("Load Chat Model", variant="primary") |
|
|
|
chat_interface_container = gr.Column(visible=False) |
|
|
|
def load_chat_model(): |
|
global chat_model_state, chat_tokenizer_state |
|
if chat_model_state is None: |
|
show_info = gr.Info |
|
show_info("Loading chat model...") |
|
model_name = "Qwen/Qwen2.5-3B-Instruct" |
|
chat_model_state = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") |
|
chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name) |
|
show_info("Chat model loaded.") |
|
|
|
return gr.update(visible=False), gr.update(visible=True) |
|
|
|
load_chat_model_btn.click(load_chat_model, outputs=[load_chat_model_btn, chat_interface_container]) |
|
|
|
with chat_interface_container: |
|
with gr.Row(): |
|
with gr.Column(): |
|
ref_audio_chat = gr.Audio(label="Reference Audio", type="filepath") |
|
with gr.Column(): |
|
with gr.Accordion("Advanced Settings", open=False): |
|
model_choice_chat = gr.Radio( |
|
choices=["F5-TTS", "E2-TTS"], |
|
label="TTS Model", |
|
value="F5-TTS", |
|
) |
|
remove_silence_chat = gr.Checkbox( |
|
label="Remove Silences", |
|
value=True, |
|
) |
|
ref_text_chat = gr.Textbox( |
|
label="Reference Text", |
|
info="Optional: Leave blank to auto-transcribe", |
|
lines=2, |
|
) |
|
system_prompt_chat = gr.Textbox( |
|
label="System Prompt", |
|
value="You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.", |
|
lines=2, |
|
) |
|
|
|
chatbot_interface = gr.Chatbot(label="Conversation") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
audio_output_chat = gr.Audio(autoplay=True) |
|
with gr.Column(): |
|
audio_input_chat = gr.Microphone( |
|
label="Speak your message", |
|
type="filepath", |
|
) |
|
|
|
clear_btn_chat = gr.Button("Clear Conversation") |
|
|
|
conversation_state = gr.State( |
|
value=[ |
|
{ |
|
"role": "system", |
|
"content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.", |
|
} |
|
] |
|
) |
|
|
|
|
|
def process_audio_input(audio_path, history, conv_state): |
|
"""Handle audio input from user""" |
|
if not audio_path: |
|
return history, conv_state, "" |
|
|
|
text = "" |
|
text = preprocess_ref_audio_text(audio_path, text)[1] |
|
|
|
if not text.strip(): |
|
return history, conv_state, "" |
|
|
|
conv_state.append({"role": "user", "content": text}) |
|
history.append((text, None)) |
|
|
|
response = generate_response(conv_state, chat_model_state, chat_tokenizer_state) |
|
|
|
conv_state.append({"role": "assistant", "content": response}) |
|
history[-1] = (text, response) |
|
|
|
return history, conv_state, "" |
|
|
|
def generate_audio_response(history, ref_audio, ref_text, model, remove_silence): |
|
"""Generate TTS audio for AI response""" |
|
if not history or not ref_audio: |
|
return None |
|
|
|
last_user_message, last_ai_response = history[-1] |
|
if not last_ai_response: |
|
return None |
|
|
|
audio_result, _ = infer( |
|
ref_audio, |
|
ref_text, |
|
last_ai_response, |
|
model, |
|
remove_silence, |
|
cross_fade_duration=0.15, |
|
speed=1.0, |
|
) |
|
return audio_result |
|
|
|
def clear_conversation(): |
|
"""Reset the conversation""" |
|
return [], [ |
|
{ |
|
"role": "system", |
|
"content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.", |
|
} |
|
] |
|
|
|
def update_system_prompt(new_prompt): |
|
"""Update the system prompt and reset the conversation""" |
|
new_conv_state = [{"role": "system", "content": new_prompt}] |
|
return [], new_conv_state |
|
|
|
|
|
audio_input_chat.stop_recording( |
|
process_audio_input, |
|
inputs=[audio_input_chat, chatbot_interface, conversation_state], |
|
outputs=[chatbot_interface, conversation_state], |
|
).then( |
|
generate_audio_response, |
|
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, model_choice_chat, remove_silence_chat], |
|
outputs=audio_output_chat, |
|
) |
|
|
|
|
|
clear_btn_chat.click( |
|
clear_conversation, |
|
outputs=[chatbot_interface, conversation_state], |
|
) |
|
|
|
|
|
system_prompt_chat.change( |
|
update_system_prompt, |
|
inputs=system_prompt_chat, |
|
outputs=[chatbot_interface, conversation_state], |
|
) |
|
|
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown( |
|
""" |
|
# E2/F5 TTS |
|
|
|
This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models: |
|
|
|
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching) |
|
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS) |
|
|
|
The checkpoints support English and Chinese. |
|
|
|
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt. |
|
|
|
**NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.** |
|
""" |
|
) |
|
gr.TabbedInterface( |
|
[app_tts, app_podcast, app_emotional, app_chat, app_credits], |
|
["TTS", "Podcast", "Multi-Style", "Voice-Chat", "Credits"], |
|
) |
|
|
|
|
|
@click.command() |
|
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on") |
|
@click.option("--host", "-H", default=None, help="Host to run the app on") |
|
@click.option( |
|
"--share", |
|
"-s", |
|
default=False, |
|
is_flag=True, |
|
help="Share the app via Gradio share link", |
|
) |
|
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access") |
|
def main(port, host, share, api): |
|
global app |
|
print("Starting app...") |
|
app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api) |
|
|
|
|
|
if __name__ == "__main__": |
|
if not USING_SPACES: |
|
main() |
|
else: |
|
app.queue().launch() |
|
|