Spaces:
Sleeping
Sleeping
gbarbadillo
commited on
Commit
·
b2a11c1
1
Parent(s):
9da6fb4
updated demo to create a single image, and changed order of inputs
Browse files
app.py
CHANGED
@@ -67,11 +67,11 @@ ip_model = get_ip_model()
|
|
67 |
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
68 |
app.prepare(ctx_id=0, det_size=(640, 640), det_thresh=0.2)
|
69 |
|
70 |
-
def generate_images(
|
71 |
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality, blurry",
|
72 |
img_prompt_scale=0.5,
|
73 |
num_inference_steps=30,
|
74 |
-
seed=None):
|
75 |
print(prompt)
|
76 |
image = cv2.imread(img_filepath)
|
77 |
faces = app.get(image)
|
@@ -95,9 +95,8 @@ with gr.Blocks() as demo:
|
|
95 |
with gr.Row():
|
96 |
with gr.Column():
|
97 |
demo_inputs = []
|
98 |
-
demo_inputs.append(gr.Image(type='filepath', label='image prompt'))
|
99 |
demo_inputs.append(gr.Textbox(label='text prompt', value='headshot of a man, green moss wall in the background'))
|
100 |
-
demo_inputs.append(gr.
|
101 |
with gr.Accordion(label='Advanced options', open=False):
|
102 |
demo_inputs.append(gr.Textbox(label='negative text prompt', value="monochrome, lowres, bad anatomy, worst quality, low quality, blurry"))
|
103 |
demo_inputs.append(gr.Slider(maximum=1, minimum=0, value=0.5, step=0.05, label='image prompt scale'))
|
@@ -113,6 +112,6 @@ with gr.Blocks() as demo:
|
|
113 |
'linkedin profile picture of a macdonalds worker',
|
114 |
'LinkedIn profile picture of a beautiful man dressed in a suit, huge explosion in the background',
|
115 |
]
|
116 |
-
gr.Examples(sample_prompts, inputs=demo_inputs[
|
117 |
|
118 |
demo.launch(share=True, debug=True)
|
|
|
67 |
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
68 |
app.prepare(ctx_id=0, det_size=(640, 640), det_thresh=0.2)
|
69 |
|
70 |
+
def generate_images(prompt, img_filepath,
|
71 |
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality, blurry",
|
72 |
img_prompt_scale=0.5,
|
73 |
num_inference_steps=30,
|
74 |
+
seed=None, n_images=1):
|
75 |
print(prompt)
|
76 |
image = cv2.imread(img_filepath)
|
77 |
faces = app.get(image)
|
|
|
95 |
with gr.Row():
|
96 |
with gr.Column():
|
97 |
demo_inputs = []
|
|
|
98 |
demo_inputs.append(gr.Textbox(label='text prompt', value='headshot of a man, green moss wall in the background'))
|
99 |
+
demo_inputs.append(gr.Image(type='filepath', label='image prompt'))
|
100 |
with gr.Accordion(label='Advanced options', open=False):
|
101 |
demo_inputs.append(gr.Textbox(label='negative text prompt', value="monochrome, lowres, bad anatomy, worst quality, low quality, blurry"))
|
102 |
demo_inputs.append(gr.Slider(maximum=1, minimum=0, value=0.5, step=0.05, label='image prompt scale'))
|
|
|
112 |
'linkedin profile picture of a macdonalds worker',
|
113 |
'LinkedIn profile picture of a beautiful man dressed in a suit, huge explosion in the background',
|
114 |
]
|
115 |
+
gr.Examples(sample_prompts, inputs=demo_inputs[0], label='Sample prompts')
|
116 |
|
117 |
demo.launch(share=True, debug=True)
|