import yfinance as yf import pandas as pd from pytickersymbols import PyTickerSymbols from config import ticker_dict def get_stocks_from_index(idx): stock_data = PyTickerSymbols() index = ticker_dict[idx] stocks = list(stock_data.get_stocks_by_index(index)) stock_names = [f"{stock['name']}:{stock['symbol']}" for stock in stocks] return stock_names def get_stock_data(ticker_name, interval, start_date, end_date): series = yf.download(tickers=ticker_name, start=start_date, end=end_date, interval=interval) return series.reset_index() def get_company_info(ticker): stock = yf.Ticker(ticker) info = stock.info fundamentals = { "Company Name": info.get("longName", "N/A"), "Sector": info.get("sector", "N/A"), "Industry": info.get("industry", "N/A"), "Market Cap": f"${info.get('marketCap', 'N/A'):,}", "P/E Ratio": round(info.get("trailingPE", 0), 2), "EPS": round(info.get("trailingEps", 0), 2), "52 Week High": f"${info.get('fiftyTwoWeekHigh', 'N/A'):,}", "52 Week Low": f"${info.get('fiftyTwoWeekLow', 'N/A'):,}", "Dividend Yield": f"{info.get('dividendYield', 0) * 100:.2f}%", "Beta": round(info.get("beta", 0), 2), } return pd.DataFrame(list(fundamentals.items()), columns=['Metric', 'Value'])