import pandas as pd import plotly.graph_objects as go from datetime import timedelta from statsmodels.tsa.arima.model import ARIMA from config import FORECAST_PERIOD, ticker_dict from data_fetcher import get_stock_data, get_company_info def is_business_day(a_date): return a_date.weekday() < 5 def forecast_series(series, model="ARIMA", forecast_period=FORECAST_PERIOD): predictions = list() if series.shape[1] > 1: series = series['Close'].values.tolist() if model == "ARIMA": for _ in range(forecast_period): model = ARIMA(series, order=(5, 1, 0)) model_fit = model.fit() output = model_fit.forecast() yhat = output[0] predictions.append(yhat) series.append(yhat) elif model == "Prophet": # Implement Prophet forecasting method pass elif model == "LSTM": # Implement LSTM forecasting method pass return predictions def get_stock_graph_and_info(idx, stock, interval, graph_type, forecast_method): stock_name, ticker_name = stock.split(":") if ticker_dict[idx] == 'FTSE 100': ticker_name += '.L' if ticker_name[-1] != '.' else 'L' elif ticker_dict[idx] == 'CAC 40': ticker_name += '.PA' series = get_stock_data(ticker_name, interval) predictions = forecast_series(series, model=forecast_method) last_date = pd.to_datetime(series['Date'].values[-1]) forecast_week = [] i = 1 while len(forecast_week) < FORECAST_PERIOD: next_date = last_date + timedelta(days=i) if is_business_day(next_date): forecast_week.append(next_date) i += 1 predictions = predictions[:len(forecast_week)] forecast_week = forecast_week[:len(predictions)] forecast = pd.DataFrame({"Date": forecast_week, "Forecast": predictions}) if graph_type == 'Line Graph': fig = go.Figure() fig.add_trace(go.Scatter(x=series['Date'], y=series['Close'], mode='lines', name='Historical')) fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast')) else: # Candlestick Graph fig = go.Figure(data=[go.Candlestick(x=series['Date'], open=series['Open'], high=series['High'], low=series['Low'], close=series['Close'], name='Historical')]) fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast')) fig.update_layout(title=f"Stock Price of {stock_name}", xaxis_title="Date", yaxis_title="Price") fundamentals = get_company_info(ticker_name) return fig, fundamentals