import datetime import gradio as gr import pandas as pd import yfinance as yf import seaborn as sns; sns.set() import matplotlib.pyplot as plt import plotly.graph_objects as go from datetime import date, timedelta from matplotlib import pyplot as plt from plotly.subplots import make_subplots from pytickersymbols import PyTickerSymbols from statsmodels.tsa.arima.model import ARIMA from pandas.plotting import autocorrelation_plot from dateutil.relativedelta import relativedelta index_options = ['FTSE 100(UK)', 'NASDAQ(USA)', 'CAC 40(FRANCE)'] ticker_dict = {'FTSE 100(UK)': 'FTSE 100', 'NASDAQ(USA)': 'NASDAQ 100', 'CAC 40(FRANCE)': 'CAC 40'} global START_DATE, END_DATE END_DATE = date.today() START_DATE = END_DATE - relativedelta(years=1) FORECAST_PERIOD = 7 demo = gr.Blocks() stock_names = [] with demo: d1 = gr.Dropdown(index_options, label='Please select Index...', info='Will be adding more indices later on', interactive=True) d2 = gr.Dropdown([]) # for specific stocks # d3 = gr.Dropdown(['General News']) def forecast_series(series, model="ARIMA", forecast_period=7): predictions = list() if series.shape[1] > 1: series = series['Close'].values.tolist() plt.show() if model == "ARIMA": ## Do grid search here --> Custom for all stocks for i in range(forecast_period): model = ARIMA(series, order=(5, 1, 0)) model_fit = model.fit() output = model_fit.forecast() yhat = output[0] predictions.append(yhat) series.append(yhat) return predictions def is_business_day(a_date): return a_date.weekday() < 5 def get_stocks_from_index(idx): stock_data = PyTickerSymbols() # indices = stock_data.get_all_indices() index = ticker_dict[idx] stock_data = PyTickerSymbols() # returns 2d list with the following information # 'name', 'symbol', 'country', 'indices', 'industries', 'symbols', 'metadata', 'isins', 'akas' stocks = list(stock_data.get_stocks_by_index(index)) ##converting filter object to list stock_names = [] for stock in stocks: stock_names.append(stock['name'] + ':' + stock['symbol']) d2 = gr.Dropdown(choices=stock_names, label='Please Select Stock from your selected index', interactive=True) return d2 d1.input(get_stocks_from_index, d1, d2) out = gr.Plot(every=10) def get_stock_graph(idx, stock): stock_name = stock.split(":")[0] ticker_name = stock.split(":")[1] if ticker_dict[idx] == 'FTSE 100': if ticker_name[-1] == '.': ticker_name += 'L' else: ticker_name += '.L' elif ticker_dict[idx] == 'CAC 40': ticker_name += '.PA' ## Can also download lower interval data apparently using line below # data = yf.download(tickers="MSFT", period="5d", interval="1m") series = yf.download(tickers=ticker_name, start=START_DATE, end=END_DATE) # stock.split(":")[1] series = series.reset_index() predictions = forecast_series(series) last_date = pd.to_datetime(series['Date'].values[-1]) forecast_week = [] while len(forecast_week) != FORECAST_PERIOD: if is_business_day(last_date): forecast_week.append(last_date) last_date += timedelta(days=1) forecast = pd.DataFrame({"Date": forecast_week, "Forecast": predictions}) fig = plt.figure(figsize=(14, 5)) sns.set_style("ticks") sns.lineplot(data=series, x="Date", y="Close", color="firebrick") sns.lineplot(data=forecast, x="Date", y="Forecast", color="blue") sns.despine() plt.title("Stock Price of {}".format(stock_name), size='x-large', color='blue') # stock.split(":")[0] text = "Your stock is:" + str(stock) return fig d2.input(get_stock_graph, [d1, d2], out) demo.launch()