Kr08 commited on
Commit
3464b48
·
verified ·
1 Parent(s): b27f230

Update stock_analysis.py

Browse files
Files changed (1) hide show
  1. stock_analysis.py +92 -58
stock_analysis.py CHANGED
@@ -1,59 +1,93 @@
1
- import gradio as gr
2
- from datetime import datetime, date, timedelta
3
- from config import index_options, time_intervals, START_DATE, END_DATE, FORECAST_PERIOD
4
- from data_fetcher import get_stocks_from_index
5
- from stock_analysis import get_stock_graph_and_info
6
-
7
- def validate_date(date_string):
8
- try:
9
- return datetime.strptime(date_string, "%Y-%m-%d").date()
10
- except ValueError:
11
- return None
12
-
13
- demo = gr.Blocks()
14
-
15
- with demo:
16
- d1 = gr.Dropdown(index_options, label='Please select Index...', info='Will be adding more indices later on', interactive=True)
17
- d2 = gr.Dropdown(label='Please Select Stock from your selected index', interactive=True)
18
- d3 = gr.Dropdown(time_intervals, label='Select Time Interval', value='1d', interactive=True)
19
- d4 = gr.Radio(['Line Graph', 'Candlestick Graph'], label='Select Graph Type', value='Line Graph', interactive=True)
20
- d5 = gr.Dropdown(['ARIMA', 'Prophet', 'LSTM'], label='Select Forecasting Method', value='ARIMA', interactive=True)
21
 
22
- # New date inputs using Textbox
23
- date_start = gr.Textbox(label="Start Date (YYYY-MM-DD)", value=START_DATE.strftime("%Y-%m-%d"))
24
- date_end = gr.Textbox(label="End Date (YYYY-MM-DD)", value=END_DATE.strftime("%Y-%m-%d"))
25
-
26
- out_graph = gr.Plot()
27
- out_fundamentals = gr.DataFrame()
28
-
29
- inputs = [d1, d2, d3, d4, d5, date_start, date_end]
30
- outputs = [out_graph, out_fundamentals]
31
-
32
- def update_stock_options(index):
33
- stocks = get_stocks_from_index(index)
34
- return gr.Dropdown(choices=stocks)
35
-
36
- def process_inputs(*args):
37
- idx, stock, interval, graph_type, forecast_method, start_date, end_date = args
38
-
39
- start = validate_date(start_date)
40
- end = validate_date(end_date)
41
-
42
- if start is None or end is None:
43
- return gr.Textbox(value="Invalid date format. Please use YYYY-MM-DD."), None
44
-
45
- if start > end:
46
- return gr.Textbox(value="Start date must be before end date."), None
47
-
48
- return get_stock_graph_and_info(idx, stock, interval, graph_type, forecast_method, start, end)
49
-
50
- d1.change(update_stock_options, d1, d2)
51
- d2.change(process_inputs, inputs, outputs)
52
- d3.change(process_inputs, inputs, outputs)
53
- d4.change(process_inputs, inputs, outputs)
54
- d5.change(process_inputs, inputs, outputs)
55
- date_start.change(process_inputs, inputs, outputs)
56
- date_end.change(process_inputs, inputs, outputs)
57
-
58
- if __name__ == "__main__":
59
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import plotly.graph_objects as go
4
+ from datetime import timedelta
5
+ from statsmodels.tsa.arima.model import ARIMA
6
+ from config import FORECAST_PERIOD, ticker_dict, CONFIDENCE_INTERVAL
7
+ from data_fetcher import get_stock_data, get_company_info
8
+
9
+ def is_business_day(a_date):
10
+ return a_date.weekday() < 5
11
+
12
+ def forecast_series(series, model="ARIMA", forecast_period=FORECAST_PERIOD):
13
+ predictions = []
14
+ confidence_intervals = []
 
 
 
 
 
 
15
 
16
+ if series.shape[1] > 1:
17
+ series = series['Close'].values.tolist()
18
+
19
+ if model == "ARIMA":
20
+ model = ARIMA(series, order=(5, 1, 0))
21
+ model_fit = model.fit()
22
+ forecast = model_fit.forecast(steps=forecast_period, alpha=(1 - CONFIDENCE_INTERVAL))
23
+ predictions = forecast.predicted_mean
24
+ confidence_intervals = forecast.conf_int()
25
+ elif model == "Prophet":
26
+ # Implement Prophet forecasting method
27
+ pass
28
+ elif model == "LSTM":
29
+ # Implement LSTM forecasting method
30
+ pass
31
+
32
+ return predictions, confidence_intervals
33
+
34
+ def get_stock_graph_and_info(idx, stock, interval, graph_type, forecast_method, start_date, end_date):
35
+ stock_name, ticker_name = stock.split(":")
36
+
37
+ if ticker_dict[idx] == 'FTSE 100':
38
+ ticker_name += '.L' if ticker_name[-1] != '.' else 'L'
39
+ elif ticker_dict[idx] == 'CAC 40':
40
+ ticker_name += '.PA'
41
+
42
+ series = get_stock_data(ticker_name, interval, start_date, end_date)
43
+ predictions, confidence_intervals = forecast_series(series, model=forecast_method)
44
+
45
+ last_date = pd.to_datetime(series['Date'].values[-1])
46
+ forecast_dates = pd.date_range(start=last_date + timedelta(days=1), periods=FORECAST_PERIOD)
47
+ forecast_dates = [date for date in forecast_dates if is_business_day(date)]
48
+
49
+ forecast = pd.DataFrame({
50
+ "Date": forecast_dates,
51
+ "Forecast": predictions,
52
+ "Lower_CI": confidence_intervals.iloc[:, 0],
53
+ "Upper_CI": confidence_intervals.iloc[:, 1]
54
+ })
55
+
56
+ if graph_type == 'Line Graph':
57
+ fig = go.Figure()
58
+ fig.add_trace(go.Scatter(x=series['Date'], y=series['Close'], mode='lines', name='Historical'))
59
+ fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
60
+ fig.add_trace(go.Scatter(
61
+ x=forecast['Date'].tolist() + forecast['Date'].tolist()[::-1],
62
+ y=forecast['Upper_CI'].tolist() + forecast['Lower_CI'].tolist()[::-1],
63
+ fill='toself',
64
+ fillcolor='rgba(0,100,80,0.2)',
65
+ line=dict(color='rgba(255,255,255,0)'),
66
+ hoverinfo="skip",
67
+ showlegend=False
68
+ ))
69
+ else: # Candlestick Graph
70
+ fig = go.Figure(data=[go.Candlestick(x=series['Date'],
71
+ open=series['Open'],
72
+ high=series['High'],
73
+ low=series['Low'],
74
+ close=series['Close'],
75
+ name='Historical')])
76
+ fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
77
+ fig.add_trace(go.Scatter(
78
+ x=forecast['Date'].tolist() + forecast['Date'].tolist()[::-1],
79
+ y=forecast['Upper_CI'].tolist() + forecast['Lower_CI'].tolist()[::-1],
80
+ fill='toself',
81
+ fillcolor='rgba(0,100,80,0.2)',
82
+ line=dict(color='rgba(255,255,255,0)'),
83
+ hoverinfo="skip",
84
+ showlegend=False
85
+ ))
86
+
87
+ fig.update_layout(title=f"Stock Price of {stock_name}",
88
+ xaxis_title="Date",
89
+ yaxis_title="Price")
90
+
91
+ fundamentals = get_company_info(ticker_name)
92
+
93
+ return fig, fundamentals