Kr08 commited on
Commit
2e79a3d
·
verified ·
1 Parent(s): c008cf1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -108
app.py CHANGED
@@ -1,124 +1,85 @@
1
- import datetime
2
- import gradio as gr
3
- import pandas as pd
4
  import yfinance as yf
5
- import seaborn as sns
6
- sns.set()
7
- import matplotlib.pyplot as plt
8
  import plotly.graph_objects as go
9
-
10
  from datetime import date, timedelta
11
- from matplotlib import pyplot as plt
12
- from plotly.subplots import make_subplots
13
- from pytickersymbols import PyTickerSymbols
14
- from statsmodels.tsa.arima.model import ARIMA
15
- from pandas.plotting import autocorrelation_plot
16
  from dateutil.relativedelta import relativedelta
17
 
18
- index_options = ['FTSE 100(UK)', 'NASDAQ(USA)', 'CAC 40(FRANCE)']
19
- ticker_dict = {'FTSE 100(UK)': 'FTSE 100', 'NASDAQ(USA)': 'NASDAQ 100', 'CAC 40(FRANCE)': 'CAC 40'}
20
- time_intervals = ['1d', '1m', '5m', '15m', '60m']
21
 
22
- global START_DATE, END_DATE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
- END_DATE = date.today()
25
- START_DATE = END_DATE - relativedelta(years=1)
26
- FORECAST_PERIOD = 7
27
- demo = gr.Blocks()
28
- stock_names = []
 
 
29
 
30
- with demo:
31
- d1 = gr.Dropdown(index_options, label='Please select Index...', info='Will be adding more indices later on', interactive=True)
32
- d2 = gr.Dropdown([], label='Please Select Stock from your selected index', interactive=True)
33
- d3 = gr.Dropdown(time_intervals, label='Select Time Interval', value='1d', interactive=True)
34
- d4 = gr.Radio(['Line Graph', 'Candlestick Graph'], label='Select Graph Type', value='Line Graph', interactive=True)
35
- d5 = gr.Dropdown(['ARIMA', 'Prophet', 'LSTM'], label='Select Forecasting Method', value='ARIMA', interactive=True)
36
 
37
- def forecast_series(series, model="ARIMA", forecast_period=7):
38
- predictions = list()
39
- if series.shape[1] > 1:
40
- series = series['Close'].values.tolist()
41
-
42
- if model == "ARIMA":
43
- for i in range(forecast_period):
44
- model = ARIMA(series, order=(5, 1, 0))
45
- model_fit = model.fit()
46
- output = model_fit.forecast()
47
- yhat = output[0]
48
- predictions.append(yhat)
49
- series.append(yhat)
50
- elif model == "Prophet":
51
- # Implement Prophet forecasting method
52
- pass
53
- elif model == "LSTM":
54
- # Implement LSTM forecasting method
55
- pass
56
 
57
- return predictions
58
 
59
- def is_business_day(a_date):
60
- return a_date.weekday() < 5
 
 
 
 
 
 
 
 
 
 
 
61
 
62
- def get_stocks_from_index(idx):
63
- stock_data = PyTickerSymbols()
64
- index = ticker_dict[idx]
65
- stocks = list(stock_data.get_stocks_by_index(index))
66
- stock_names = [f"{stock['name']}:{stock['symbol']}" for stock in stocks]
67
- return gr.Dropdown(choices=stock_names, label='Please Select Stock from your selected index', interactive=True)
 
 
 
 
 
 
 
 
 
68
 
69
- d1.input(get_stocks_from_index, d1, d2)
70
-
71
- def get_stock_graph(idx, stock, interval, graph_type, forecast_method):
72
- stock_name, ticker_name = stock.split(":")
73
-
74
- if ticker_dict[idx] == 'FTSE 100':
75
- ticker_name += '.L' if ticker_name[-1] != '.' else 'L'
76
- elif ticker_dict[idx] == 'CAC 40':
77
- ticker_name += '.PA'
78
-
79
- series = yf.download(tickers=ticker_name, start=START_DATE, end=END_DATE, interval=interval)
80
- series = series.reset_index()
81
-
82
- predictions = forecast_series(series, model=forecast_method)
83
-
84
- last_date = pd.to_datetime(series['Date'].values[-1])
85
- forecast_week = []
86
- i = 1
87
- while len(forecast_week) < FORECAST_PERIOD:
88
- next_date = last_date + timedelta(days=i)
89
- if is_business_day(next_date):
90
- forecast_week.append(next_date)
91
- i += 1
92
-
93
- # Ensure predictions and forecast_week have the same length
94
- predictions = predictions[:len(forecast_week)]
95
- forecast_week = forecast_week[:len(predictions)]
96
-
97
- forecast = pd.DataFrame({"Date": forecast_week, "Forecast": predictions})
98
-
99
- if graph_type == 'Line Graph':
100
- fig = go.Figure()
101
- fig.add_trace(go.Scatter(x=series['Date'], y=series['Close'], mode='lines', name='Historical'))
102
- fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
103
- else: # Candlestick Graph
104
- fig = go.Figure(data=[go.Candlestick(x=series['Date'],
105
- open=series['Open'],
106
- high=series['High'],
107
- low=series['Low'],
108
- close=series['Close'],
109
- name='Historical')])
110
- fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
111
-
112
- fig.update_layout(title=f"Stock Price of {stock_name}",
113
- xaxis_title="Date",
114
- yaxis_title="Price")
115
-
116
- return fig
117
- out = gr.Plot()
118
  inputs = [d1, d2, d3, d4, d5]
119
- d2.input(get_stock_graph, inputs, out)
120
- d3.input(get_stock_graph, inputs, out)
121
- d4.input(get_stock_graph, inputs, out)
122
- d5.input(get_stock_graph, inputs, out)
 
 
123
 
124
  demo.launch()
 
 
 
 
1
  import yfinance as yf
2
+ import pandas as pd
 
 
3
  import plotly.graph_objects as go
4
+ import gradio as gr
5
  from datetime import date, timedelta
 
 
 
 
 
6
  from dateutil.relativedelta import relativedelta
7
 
8
+ # ... (keep the existing imports and global variables)
 
 
9
 
10
+ def get_company_info(ticker):
11
+ stock = yf.Ticker(ticker)
12
+ info = stock.info
13
+
14
+ # Select relevant fundamental information
15
+ fundamentals = {
16
+ "Company Name": info.get("longName", "N/A"),
17
+ "Sector": info.get("sector", "N/A"),
18
+ "Industry": info.get("industry", "N/A"),
19
+ "Market Cap": f"${info.get('marketCap', 'N/A'):,}",
20
+ "P/E Ratio": round(info.get("trailingPE", 0), 2),
21
+ "EPS": round(info.get("trailingEps", 0), 2),
22
+ "52 Week High": f"${info.get('fiftyTwoWeekHigh', 'N/A'):,}",
23
+ "52 Week Low": f"${info.get('fiftyTwoWeekLow', 'N/A'):,}",
24
+ "Dividend Yield": f"{info.get('dividendYield', 0) * 100:.2f}%",
25
+ "Beta": round(info.get("beta", 0), 2),
26
+ }
27
+
28
+ return pd.DataFrame(list(fundamentals.items()), columns=['Metric', 'Value'])
29
 
30
+ def get_stock_graph_and_info(idx, stock, interval, graph_type, forecast_method):
31
+ stock_name, ticker_name = stock.split(":")
32
+
33
+ if ticker_dict[idx] == 'FTSE 100':
34
+ ticker_name += '.L' if ticker_name[-1] != '.' else 'L'
35
+ elif ticker_dict[idx] == 'CAC 40':
36
+ ticker_name += '.PA'
37
 
38
+ # Get stock price data
39
+ series = yf.download(tickers=ticker_name, start=START_DATE, end=END_DATE, interval=interval)
40
+ series = series.reset_index()
 
 
 
41
 
42
+ # Generate forecast
43
+ predictions = forecast_series(series, model=forecast_method)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
+ # ... (keep the existing forecast date generation code)
46
 
47
+ # Create graph
48
+ if graph_type == 'Line Graph':
49
+ fig = go.Figure()
50
+ fig.add_trace(go.Scatter(x=series['Date'], y=series['Close'], mode='lines', name='Historical'))
51
+ fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
52
+ else: # Candlestick Graph
53
+ fig = go.Figure(data=[go.Candlestick(x=series['Date'],
54
+ open=series['Open'],
55
+ high=series['High'],
56
+ low=series['Low'],
57
+ close=series['Close'],
58
+ name='Historical')])
59
+ fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
60
 
61
+ fig.update_layout(title=f"Stock Price of {stock_name}",
62
+ xaxis_title="Date",
63
+ yaxis_title="Price")
64
+
65
+ # Get fundamental information
66
+ fundamentals = get_company_info(ticker_name)
67
+
68
+ return fig, fundamentals
69
+
70
+ # Update the Gradio interface
71
+ with demo:
72
+ # ... (keep the existing input components)
73
+
74
+ out_graph = gr.Plot()
75
+ out_fundamentals = gr.DataFrame()
76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  inputs = [d1, d2, d3, d4, d5]
78
+ outputs = [out_graph, out_fundamentals]
79
+
80
+ d2.input(get_stock_graph_and_info, inputs, outputs)
81
+ d3.input(get_stock_graph_and_info, inputs, outputs)
82
+ d4.input(get_stock_graph_and_info, inputs, outputs)
83
+ d5.input(get_stock_graph_and_info, inputs, outputs)
84
 
85
  demo.launch()