Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import yfinance as yf
|
5 |
+
import seaborn as sns;
|
6 |
+
|
7 |
+
sns.set()
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
import plotly.graph_objects as go
|
10 |
+
|
11 |
+
from datetime import date, timedelta
|
12 |
+
from matplotlib import pyplot as plt
|
13 |
+
from plotly.subplots import make_subplots
|
14 |
+
from pytickersymbols import PyTickerSymbols
|
15 |
+
from statsmodels.tsa.arima.model import ARIMA
|
16 |
+
from pandas.plotting import autocorrelation_plot
|
17 |
+
from dateutil.relativedelta import relativedelta
|
18 |
+
|
19 |
+
index_options = ['FTSE 100(UK)', 'NASDAQ(USA)', 'CAC 40(FRANCE)']
|
20 |
+
ticker_dict = {'FTSE 100(UK)': 'FTSE 100', 'NASDAQ(USA)': 'NASDAQ 100', 'CAC 40(FRANCE)': 'CAC 40'}
|
21 |
+
|
22 |
+
global START_DATE, END_DATE
|
23 |
+
|
24 |
+
END_DATE = date.today()
|
25 |
+
START_DATE = END_DATE - relativedelta(years=1)
|
26 |
+
FORECAST_PERIOD = 7
|
27 |
+
demo = gr.Blocks()
|
28 |
+
stock_names = []
|
29 |
+
|
30 |
+
with demo:
|
31 |
+
d1 = gr.Dropdown(index_options, label='Please select Index...',
|
32 |
+
info='Will be adding more indices later on',
|
33 |
+
interactive=True)
|
34 |
+
|
35 |
+
d2 = gr.Dropdown([]) # for specific stocks
|
36 |
+
|
37 |
+
|
38 |
+
# d3 = gr.Dropdown(['General News'])
|
39 |
+
|
40 |
+
def forecast_series(series, model="ARIMA", forecast_period=7):
|
41 |
+
|
42 |
+
predictions = list()
|
43 |
+
if series.shape[1] > 1:
|
44 |
+
series = series['Close'].values.tolist()
|
45 |
+
plt.show()
|
46 |
+
if model == "ARIMA":
|
47 |
+
## Do grid search here --> Custom for all stocks
|
48 |
+
for i in range(forecast_period):
|
49 |
+
model = ARIMA(series, order=(5, 1, 0))
|
50 |
+
model_fit = model.fit()
|
51 |
+
output = model_fit.forecast()
|
52 |
+
yhat = output[0]
|
53 |
+
predictions.append(yhat)
|
54 |
+
series.append(yhat)
|
55 |
+
|
56 |
+
return predictions
|
57 |
+
|
58 |
+
|
59 |
+
def is_business_day(a_date):
|
60 |
+
return a_date.weekday() < 5
|
61 |
+
|
62 |
+
|
63 |
+
def get_stocks_from_index(idx):
|
64 |
+
stock_data = PyTickerSymbols()
|
65 |
+
# indices = stock_data.get_all_indices()
|
66 |
+
index = ticker_dict[idx]
|
67 |
+
stock_data = PyTickerSymbols()
|
68 |
+
|
69 |
+
# returns 2d list with the following information
|
70 |
+
# 'name', 'symbol', 'country', 'indices', 'industries', 'symbols', 'metadata', 'isins', 'akas'
|
71 |
+
stocks = list(stock_data.get_stocks_by_index(index)) ##converting filter object to list
|
72 |
+
stock_names = []
|
73 |
+
for stock in stocks:
|
74 |
+
stock_names.append(stock['name'] + ':' + stock['symbol'])
|
75 |
+
d2 = gr.Dropdown(choices=stock_names, label='Please Select Stock from your selected index', interactive=True)
|
76 |
+
return d2
|
77 |
+
|
78 |
+
|
79 |
+
d1.input(get_stocks_from_index, d1, d2)
|
80 |
+
out = gr.Plot(every=10)
|
81 |
+
|
82 |
+
|
83 |
+
def get_stock_graph(idx, stock):
|
84 |
+
|
85 |
+
stock_name = stock.split(":")[0]
|
86 |
+
ticker_name = stock.split(":")[1]
|
87 |
+
|
88 |
+
if ticker_dict[idx] == 'FTSE 100':
|
89 |
+
if ticker_name[-1] == '.':
|
90 |
+
ticker_name += 'L'
|
91 |
+
else:
|
92 |
+
ticker_name += '.L'
|
93 |
+
elif ticker_dict[idx] == 'CAC 40':
|
94 |
+
ticker_name += '.PA'
|
95 |
+
|
96 |
+
## Can also download lower interval data apparently using line below
|
97 |
+
# data = yf.download(tickers="MSFT", period="5d", interval="1m")
|
98 |
+
series = yf.download(tickers=ticker_name, start=START_DATE, end=END_DATE) # stock.split(":")[1]
|
99 |
+
series = series.reset_index()
|
100 |
+
|
101 |
+
predictions = forecast_series(series)
|
102 |
+
|
103 |
+
last_date = pd.to_datetime(series['Date'].values[-1])
|
104 |
+
forecast_week = []
|
105 |
+
|
106 |
+
while len(forecast_week) != FORECAST_PERIOD:
|
107 |
+
if is_business_day(last_date):
|
108 |
+
forecast_week.append(last_date)
|
109 |
+
last_date += timedelta(days=1)
|
110 |
+
|
111 |
+
forecast = pd.DataFrame({"Date": forecast_week, "Forecast": predictions})
|
112 |
+
|
113 |
+
fig = plt.figure(figsize=(14, 5))
|
114 |
+
sns.set_style("ticks")
|
115 |
+
sns.lineplot(data=series, x="Date", y="Close", color="firebrick")
|
116 |
+
sns.lineplot(data=forecast, x="Date", y="Forecast", color="blue")
|
117 |
+
sns.despine()
|
118 |
+
|
119 |
+
plt.title("Stock Price of {}".format(stock_name), size='x-large', color='blue') # stock.split(":")[0]
|
120 |
+
text = "Your stock is:" + str(stock)
|
121 |
+
return fig
|
122 |
+
|
123 |
+
|
124 |
+
d2.input(get_stock_graph, [d1, d2], out)
|
125 |
+
demo.launch()
|