Kr08 commited on
Commit
2e2dfb4
·
1 Parent(s): 5fccb4e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +125 -0
app.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datetime
2
+ import gradio as gr
3
+ import pandas as pd
4
+ import yfinance as yf
5
+ import seaborn as sns;
6
+
7
+ sns.set()
8
+ import matplotlib.pyplot as plt
9
+ import plotly.graph_objects as go
10
+
11
+ from datetime import date, timedelta
12
+ from matplotlib import pyplot as plt
13
+ from plotly.subplots import make_subplots
14
+ from pytickersymbols import PyTickerSymbols
15
+ from statsmodels.tsa.arima.model import ARIMA
16
+ from pandas.plotting import autocorrelation_plot
17
+ from dateutil.relativedelta import relativedelta
18
+
19
+ index_options = ['FTSE 100(UK)', 'NASDAQ(USA)', 'CAC 40(FRANCE)']
20
+ ticker_dict = {'FTSE 100(UK)': 'FTSE 100', 'NASDAQ(USA)': 'NASDAQ 100', 'CAC 40(FRANCE)': 'CAC 40'}
21
+
22
+ global START_DATE, END_DATE
23
+
24
+ END_DATE = date.today()
25
+ START_DATE = END_DATE - relativedelta(years=1)
26
+ FORECAST_PERIOD = 7
27
+ demo = gr.Blocks()
28
+ stock_names = []
29
+
30
+ with demo:
31
+ d1 = gr.Dropdown(index_options, label='Please select Index...',
32
+ info='Will be adding more indices later on',
33
+ interactive=True)
34
+
35
+ d2 = gr.Dropdown([]) # for specific stocks
36
+
37
+
38
+ # d3 = gr.Dropdown(['General News'])
39
+
40
+ def forecast_series(series, model="ARIMA", forecast_period=7):
41
+
42
+ predictions = list()
43
+ if series.shape[1] > 1:
44
+ series = series['Close'].values.tolist()
45
+ plt.show()
46
+ if model == "ARIMA":
47
+ ## Do grid search here --> Custom for all stocks
48
+ for i in range(forecast_period):
49
+ model = ARIMA(series, order=(5, 1, 0))
50
+ model_fit = model.fit()
51
+ output = model_fit.forecast()
52
+ yhat = output[0]
53
+ predictions.append(yhat)
54
+ series.append(yhat)
55
+
56
+ return predictions
57
+
58
+
59
+ def is_business_day(a_date):
60
+ return a_date.weekday() < 5
61
+
62
+
63
+ def get_stocks_from_index(idx):
64
+ stock_data = PyTickerSymbols()
65
+ # indices = stock_data.get_all_indices()
66
+ index = ticker_dict[idx]
67
+ stock_data = PyTickerSymbols()
68
+
69
+ # returns 2d list with the following information
70
+ # 'name', 'symbol', 'country', 'indices', 'industries', 'symbols', 'metadata', 'isins', 'akas'
71
+ stocks = list(stock_data.get_stocks_by_index(index)) ##converting filter object to list
72
+ stock_names = []
73
+ for stock in stocks:
74
+ stock_names.append(stock['name'] + ':' + stock['symbol'])
75
+ d2 = gr.Dropdown(choices=stock_names, label='Please Select Stock from your selected index', interactive=True)
76
+ return d2
77
+
78
+
79
+ d1.input(get_stocks_from_index, d1, d2)
80
+ out = gr.Plot(every=10)
81
+
82
+
83
+ def get_stock_graph(idx, stock):
84
+
85
+ stock_name = stock.split(":")[0]
86
+ ticker_name = stock.split(":")[1]
87
+
88
+ if ticker_dict[idx] == 'FTSE 100':
89
+ if ticker_name[-1] == '.':
90
+ ticker_name += 'L'
91
+ else:
92
+ ticker_name += '.L'
93
+ elif ticker_dict[idx] == 'CAC 40':
94
+ ticker_name += '.PA'
95
+
96
+ ## Can also download lower interval data apparently using line below
97
+ # data = yf.download(tickers="MSFT", period="5d", interval="1m")
98
+ series = yf.download(tickers=ticker_name, start=START_DATE, end=END_DATE) # stock.split(":")[1]
99
+ series = series.reset_index()
100
+
101
+ predictions = forecast_series(series)
102
+
103
+ last_date = pd.to_datetime(series['Date'].values[-1])
104
+ forecast_week = []
105
+
106
+ while len(forecast_week) != FORECAST_PERIOD:
107
+ if is_business_day(last_date):
108
+ forecast_week.append(last_date)
109
+ last_date += timedelta(days=1)
110
+
111
+ forecast = pd.DataFrame({"Date": forecast_week, "Forecast": predictions})
112
+
113
+ fig = plt.figure(figsize=(14, 5))
114
+ sns.set_style("ticks")
115
+ sns.lineplot(data=series, x="Date", y="Close", color="firebrick")
116
+ sns.lineplot(data=forecast, x="Date", y="Forecast", color="blue")
117
+ sns.despine()
118
+
119
+ plt.title("Stock Price of {}".format(stock_name), size='x-large', color='blue') # stock.split(":")[0]
120
+ text = "Your stock is:" + str(stock)
121
+ return fig
122
+
123
+
124
+ d2.input(get_stock_graph, [d1, d2], out)
125
+ demo.launch()