Spaces:
Sleeping
Sleeping
Create stock_analysis.py
Browse files- stock_analysis.py +77 -0
stock_analysis.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import plotly.graph_objects as go
|
3 |
+
from datetime import timedelta
|
4 |
+
from statsmodels.tsa.arima.model import ARIMA
|
5 |
+
from config import FORECAST_PERIOD, ticker_dict
|
6 |
+
from data_fetcher import get_stock_data, get_company_info
|
7 |
+
|
8 |
+
def is_business_day(a_date):
|
9 |
+
return a_date.weekday() < 5
|
10 |
+
|
11 |
+
def forecast_series(series, model="ARIMA", forecast_period=FORECAST_PERIOD):
|
12 |
+
predictions = list()
|
13 |
+
if series.shape[1] > 1:
|
14 |
+
series = series['Close'].values.tolist()
|
15 |
+
|
16 |
+
if model == "ARIMA":
|
17 |
+
for _ in range(forecast_period):
|
18 |
+
model = ARIMA(series, order=(5, 1, 0))
|
19 |
+
model_fit = model.fit()
|
20 |
+
output = model_fit.forecast()
|
21 |
+
yhat = output[0]
|
22 |
+
predictions.append(yhat)
|
23 |
+
series.append(yhat)
|
24 |
+
elif model == "Prophet":
|
25 |
+
# Implement Prophet forecasting method
|
26 |
+
pass
|
27 |
+
elif model == "LSTM":
|
28 |
+
# Implement LSTM forecasting method
|
29 |
+
pass
|
30 |
+
|
31 |
+
return predictions
|
32 |
+
|
33 |
+
def get_stock_graph_and_info(idx, stock, interval, graph_type, forecast_method):
|
34 |
+
stock_name, ticker_name = stock.split(":")
|
35 |
+
|
36 |
+
if ticker_dict[idx] == 'FTSE 100':
|
37 |
+
ticker_name += '.L' if ticker_name[-1] != '.' else 'L'
|
38 |
+
elif ticker_dict[idx] == 'CAC 40':
|
39 |
+
ticker_name += '.PA'
|
40 |
+
|
41 |
+
series = get_stock_data(ticker_name, interval)
|
42 |
+
predictions = forecast_series(series, model=forecast_method)
|
43 |
+
|
44 |
+
last_date = pd.to_datetime(series['Date'].values[-1])
|
45 |
+
forecast_week = []
|
46 |
+
i = 1
|
47 |
+
while len(forecast_week) < FORECAST_PERIOD:
|
48 |
+
next_date = last_date + timedelta(days=i)
|
49 |
+
if is_business_day(next_date):
|
50 |
+
forecast_week.append(next_date)
|
51 |
+
i += 1
|
52 |
+
|
53 |
+
predictions = predictions[:len(forecast_week)]
|
54 |
+
forecast_week = forecast_week[:len(predictions)]
|
55 |
+
|
56 |
+
forecast = pd.DataFrame({"Date": forecast_week, "Forecast": predictions})
|
57 |
+
|
58 |
+
if graph_type == 'Line Graph':
|
59 |
+
fig = go.Figure()
|
60 |
+
fig.add_trace(go.Scatter(x=series['Date'], y=series['Close'], mode='lines', name='Historical'))
|
61 |
+
fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
|
62 |
+
else: # Candlestick Graph
|
63 |
+
fig = go.Figure(data=[go.Candlestick(x=series['Date'],
|
64 |
+
open=series['Open'],
|
65 |
+
high=series['High'],
|
66 |
+
low=series['Low'],
|
67 |
+
close=series['Close'],
|
68 |
+
name='Historical')])
|
69 |
+
fig.add_trace(go.Scatter(x=forecast['Date'], y=forecast['Forecast'], mode='lines', name='Forecast'))
|
70 |
+
|
71 |
+
fig.update_layout(title=f"Stock Price of {stock_name}",
|
72 |
+
xaxis_title="Date",
|
73 |
+
yaxis_title="Price")
|
74 |
+
|
75 |
+
fundamentals = get_company_info(ticker_name)
|
76 |
+
|
77 |
+
return fig, fundamentals
|