ASR / app.py
Kr08's picture
Update app.py
a900380 verified
raw
history blame
8.05 kB
import os
import json
import gradio as gr
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import logging
import traceback
import sys
from audio_processing import AudioProcessor
import spaces
from chunkedTranscriber import ChunkedTranscriber
from system_message import SYSTEM_MESSAGE
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
def load_qa_model():
"""Load question-answering model with long context support."""
try:
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4"
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=os.getenv("HF_TOKEN"))
tokenizer.model_max_length = 8192 # Configure tokenizer for long inputs
# Load the model with simplified rope_scaling configuration
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
rope_scaling={
"type": "dynamic", # Simplified type as expected by the model
"factor": 8.0 # Scaling factor to support longer contexts
},
use_auth_token=os.getenv("HF_TOKEN")
)
# Initialize the pipeline
qa_pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=1024, # Limit generation as needed
)
return qa_pipeline
except Exception as e:
logger.error(f"Failed to load Q&A model: {str(e)}")
return None
# def load_qa_model():
# """Load question-answering model"""
# try:
# model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
# qa_pipeline = pipeline(
# "text-generation",
# model="hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
# model_kwargs={"torch_dtype": torch.bfloat16},
# device_map="auto",
# use_auth_token=os.getenv("HF_TOKEN")
# )
# return qa_pipeline
# except Exception as e:
# logger.error(f"Failed to load Q&A model: {str(e)}")
# return None
def load_summarization_model():
"""Load summarization model"""
try:
summarizer = pipeline(
"summarization",
model="sshleifer/distilbart-cnn-12-6",
device=0 if torch.cuda.is_available() else -1
)
return summarizer
except Exception as e:
logger.error(f"Failed to load summarization model: {str(e)}")
return None
@spaces.GPU(duration=120)
def process_audio(audio_file, translate=False):
"""Process audio file"""
transcriber = ChunkedTranscriber(chunk_size=5, overlap=1)
_translation, _output = transcriber.transcribe_audio(audio_file, translate=True)
return _translation, _output
# try:
# processor = AudioProcessor()
# language_segments, final_segments = processor.process_audio(audio_file, translate)
# # Format output
# transcription = ""
# full_text = ""
# # Add language detection information
# for segment in language_segments:
# transcription += f"Language: {segment['language']}\n"
# transcription += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
# # Add transcription/translation information
# transcription += "Transcription with language detection:\n\n"
# for segment in final_segments:
# transcription += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}):\n"
# transcription += f"Original: {segment['text']}\n"
# if translate and 'translated' in segment:
# transcription += f"Translated: {segment['translated']}\n"
# full_text += segment['translated'] + " "
# else:
# full_text += segment['text'] + " "
# transcription += "\n"
# return transcription, full_text
# except Exception as e:
# logger.error(f"Audio processing failed: {str(e)}")
# raise gr.Error(f"Processing failed: {str(e)}")
@spaces.GPU(duration=120)
def summarize_text(text):
"""Summarize text"""
try:
summarizer = load_summarization_model()
if summarizer is None:
return "Summarization model could not be loaded."
logger.info("Successfully loaded summarization Model")
# logger.info(f"\n\n {text}\n")
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
return summary
except Exception as e:
logger.error(f"Summarization failed: {str(e)}")
return "Error occurred during summarization."
@spaces.GPU(duration=120)
def answer_question(context, question):
"""Answer questions about the text"""
try:
qa_pipeline = load_qa_model()
if qa_pipeline is None:
return "Q&A model could not be loaded."
if not question :
return "Please enter your Question"
messages = [
# {"role": "system", "content": "You are a helpful assistant who can answer questions based on the given context."},
{"role":"system", "content": SYSTEM_MESSAGE},
{"role": "user", "content": f"Context: {context}\n\nQuestion: {question}"}
]
response = qa_pipeline(messages, max_new_tokens=256)[0]['generated_text']
return response
except Exception as e:
logger.error(f"Q&A failed: {str(e)}")
return f"Error occurred during Q&A process: {str(e)}"
# Create Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# Automatic Speech Recognition for Indic Languages")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(type="filepath")
translate_checkbox = gr.Checkbox(label="Enable Translation")
process_button = gr.Button("Process Audio")
with gr.Column():
# ASR_RESULT = gr.Textbox(label="Output")
full_text_output = gr.Textbox(label="Full Text", lines=5)
translation_output = gr.Textbox(label="Transcription/Translation", lines=10)
with gr.Row():
with gr.Column():
summarize_button = gr.Button("Summarize")
summary_output = gr.Textbox(label="Summary", lines=3)
with gr.Column():
question_input = gr.Textbox(label="Ask a question about the transcription")
answer_button = gr.Button("Get Answer")
answer_output = gr.Textbox(label="Answer", lines=3)
# Set up event handlers
process_button.click(
process_audio,
inputs=[audio_input, translate_checkbox],
outputs=[translation_output, full_text_output]
# outputs=[ASR_RESULT]
)
# translated_text = ''.join(item['translated'] for item in ASR_RESULT if 'translated' in item)
summarize_button.click(
summarize_text,
# inputs=[ASR_RESULT],
inputs=[translation_output],
outputs=[summary_output]
)
answer_button.click(
answer_question,
inputs=[full_text_output, question_input],
outputs=[answer_output]
)
# Add system information
gr.Markdown(f"""
## System Information
- Device: {"CUDA" if torch.cuda.is_available() else "CPU"}
- CUDA Available: {"Yes" if torch.cuda.is_available() else "No"}
## Features
- Automatic language detection
- High-quality transcription using MMS
- Optional translation to English
- Text summarization
- Question answering
""")
if __name__ == "__main__":
iface.launch(server_port=None)