Spaces:
Sleeping
Sleeping
File size: 5,786 Bytes
e368f8b fb79caf e368f8b 8cc69ea fb79caf e368f8b fb79caf e368f8b b815c4a e368f8b f427fe9 8cc69ea e368f8b 6d2ca12 8cc69ea e368f8b 6d2ca12 8cc69ea e368f8b 7f5deab 8cc69ea e368f8b 8cc69ea e368f8b 7f5deab e368f8b 375457e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import logging
import traceback
import sys
from audio_processing import AudioProcessor
import spaces
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)
def load_qa_model():
"""Load question-answering model"""
try:
qa_pipeline = pipeline(
"text-generation",
model="meta-llama/Meta-Llama-3-8B-Instruct",
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
return qa_pipeline
except Exception as e:
logger.error(f"Failed to load Q&A model: {str(e)}")
return None
def load_summarization_model():
"""Load summarization model"""
try:
summarizer = pipeline(
"summarization",
model="sshleifer/distilbart-cnn-12-6",
device=0 if torch.cuda.is_available() else -1
)
return summarizer
except Exception as e:
logger.error(f"Failed to load summarization model: {str(e)}")
return None
@spaces.GPU(duration=60)
def process_audio(audio_file, translate=False):
"""Process audio file"""
try:
processor = AudioProcessor()
language_segments, final_segments = processor.process_audio(audio_file, translate)
# Format output
transcription = ""
full_text = ""
# Add language detection information
for segment in language_segments:
transcription += f"Language: {segment['language']}\n"
transcription += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
# Add transcription/translation information
transcription += "Transcription with language detection:\n\n"
for segment in final_segments:
transcription += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}):\n"
transcription += f"Original: {segment['text']}\n"
if translate and 'translated' in segment:
transcription += f"Translated: {segment['translated']}\n"
full_text += segment['translated'] + " "
else:
full_text += segment['text'] + " "
transcription += "\n"
return transcription, full_text
except Exception as e:
logger.error(f"Audio processing failed: {str(e)}")
raise gr.Error(f"Processing failed: {str(e)}")
@spaces.GPU(duration=60)
def summarize_text(text):
"""Summarize text"""
try:
summarizer = load_summarization_model()
if summarizer is None:
return "Summarization model could not be loaded."
summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
return summary
except Exception as e:
logger.error(f"Summarization failed: {str(e)}")
return "Error occurred during summarization."
@spaces.GPU(duration=60)
def answer_question(context, question):
"""Answer questions about the text"""
try:
qa_pipeline = load_qa_model()
if qa_pipeline is None:
return "Q&A model could not be loaded."
messages = [
{"role": "system", "content": "You are a helpful assistant who can answer questions based on the given context."},
{"role": "user", "content": f"Context: {context}\n\nQuestion: {question}"}
]
response = qa_pipeline(messages, max_new_tokens=256)[0]['generated_text']
return response
except Exception as e:
logger.error(f"Q&A failed: {str(e)}")
return f"Error occurred during Q&A process: {str(e)}"
# Create Gradio interface
with gr.Blocks() as iface:
gr.Markdown("# Automatic Speech Recognition for Indic Languages")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(type="filepath")
translate_checkbox = gr.Checkbox(label="Enable Translation")
process_button = gr.Button("Process Audio")
with gr.Column():
transcription_output = gr.Textbox(label="Transcription/Translation", lines=10)
full_text_output = gr.Textbox(label="Full Text", lines=5)
with gr.Row():
with gr.Column():
summarize_button = gr.Button("Summarize")
summary_output = gr.Textbox(label="Summary", lines=3)
with gr.Column():
question_input = gr.Textbox(label="Ask a question about the transcription")
answer_button = gr.Button("Get Answer")
answer_output = gr.Textbox(label="Answer", lines=3)
# Set up event handlers
process_button.click(
process_audio,
inputs=[audio_input, translate_checkbox],
outputs=[transcription_output, full_text_output]
)
summarize_button.click(
summarize_text,
inputs=[full_text_output],
outputs=[summary_output]
)
answer_button.click(
answer_question,
inputs=[full_text_output, question_input],
outputs=[answer_output]
)
# Add system information
gr.Markdown(f"""
## System Information
- Device: {"CUDA" if torch.cuda.is_available() else "CPU"}
- CUDA Available: {"Yes" if torch.cuda.is_available() else "No"}
## Features
- Automatic language detection
- High-quality transcription using MMS
- Optional translation to English
- Text summarization
- Question answering
""")
if __name__ == "__main__":
iface.launch(server_port=None) |