File size: 5,786 Bytes
e368f8b
fb79caf
e368f8b
 
 
 
 
8cc69ea
 
fb79caf
e368f8b
 
 
 
 
 
fb79caf
e368f8b
 
 
 
 
 
 
 
 
 
 
 
 
b815c4a
e368f8b
 
 
 
 
 
 
 
 
 
 
 
f427fe9
8cc69ea
 
e368f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d2ca12
8cc69ea
 
e368f8b
 
 
 
 
 
 
 
 
 
 
 
6d2ca12
8cc69ea
 
e368f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5deab
8cc69ea
e368f8b
 
8cc69ea
e368f8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f5deab
e368f8b
375457e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import gradio as gr
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
import logging
import traceback
import sys
from audio_processing import AudioProcessor
import spaces 


logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
    handlers=[logging.StreamHandler(sys.stdout)]
)
logger = logging.getLogger(__name__)

def load_qa_model():
    """Load question-answering model"""
    try:
        qa_pipeline = pipeline(
            "text-generation",
            model="meta-llama/Meta-Llama-3-8B-Instruct",
            model_kwargs={"torch_dtype": torch.bfloat16},
            device_map="auto",
        )
        return qa_pipeline
    except Exception as e:
        logger.error(f"Failed to load Q&A model: {str(e)}")
        return None

def load_summarization_model():
    """Load summarization model"""
    try:
        summarizer = pipeline(
            "summarization", 
            model="sshleifer/distilbart-cnn-12-6",
            device=0 if torch.cuda.is_available() else -1
        )
        return summarizer
    except Exception as e:
        logger.error(f"Failed to load summarization model: {str(e)}")
        return None


@spaces.GPU(duration=60)
def process_audio(audio_file, translate=False):
    """Process audio file"""
    try:
        processor = AudioProcessor()
        language_segments, final_segments = processor.process_audio(audio_file, translate)
        
        # Format output
        transcription = ""
        full_text = ""
        
        # Add language detection information
        for segment in language_segments:
            transcription += f"Language: {segment['language']}\n"
            transcription += f"Time: {segment['start']:.2f}s - {segment['end']:.2f}s\n\n"
        
        # Add transcription/translation information
        transcription += "Transcription with language detection:\n\n"
        for segment in final_segments:
            transcription += f"[{segment['start']:.2f}s - {segment['end']:.2f}s] ({segment['language']}):\n"
            transcription += f"Original: {segment['text']}\n"
            if translate and 'translated' in segment:
                transcription += f"Translated: {segment['translated']}\n"
                full_text += segment['translated'] + " "
            else:
                full_text += segment['text'] + " "
            transcription += "\n"
        
        return transcription, full_text
        
    except Exception as e:
        logger.error(f"Audio processing failed: {str(e)}")
        raise gr.Error(f"Processing failed: {str(e)}")


@spaces.GPU(duration=60)
def summarize_text(text):
    """Summarize text"""
    try:
        summarizer = load_summarization_model()
        if summarizer is None:
            return "Summarization model could not be loaded."
        
        summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text']
        return summary
    except Exception as e:
        logger.error(f"Summarization failed: {str(e)}")
        return "Error occurred during summarization."


@spaces.GPU(duration=60)
def answer_question(context, question):
    """Answer questions about the text"""
    try:
        qa_pipeline = load_qa_model()
        if qa_pipeline is None:
            return "Q&A model could not be loaded."
        
        messages = [
            {"role": "system", "content": "You are a helpful assistant who can answer questions based on the given context."},
            {"role": "user", "content": f"Context: {context}\n\nQuestion: {question}"}
        ]
        
        response = qa_pipeline(messages, max_new_tokens=256)[0]['generated_text']
        return response
    except Exception as e:
        logger.error(f"Q&A failed: {str(e)}")
        return f"Error occurred during Q&A process: {str(e)}"


# Create Gradio interface
with gr.Blocks() as iface:
    gr.Markdown("# Automatic Speech Recognition for Indic Languages")
    
    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(type="filepath")
            translate_checkbox = gr.Checkbox(label="Enable Translation")
            process_button = gr.Button("Process Audio")
        
        with gr.Column():
            transcription_output = gr.Textbox(label="Transcription/Translation", lines=10)
            full_text_output = gr.Textbox(label="Full Text", lines=5)
    
    with gr.Row():
        with gr.Column():
            summarize_button = gr.Button("Summarize")
            summary_output = gr.Textbox(label="Summary", lines=3)
            
        with gr.Column():
            question_input = gr.Textbox(label="Ask a question about the transcription")
            answer_button = gr.Button("Get Answer")
            answer_output = gr.Textbox(label="Answer", lines=3)
    
    # Set up event handlers
    process_button.click(
        process_audio,
        inputs=[audio_input, translate_checkbox],
        outputs=[transcription_output, full_text_output]
    )
    
    summarize_button.click(
        summarize_text,
        inputs=[full_text_output],
        outputs=[summary_output]
    )
    
    answer_button.click(
        answer_question,
        inputs=[full_text_output, question_input],
        outputs=[answer_output]
    )
    
    # Add system information
    gr.Markdown(f"""
    ## System Information
    - Device: {"CUDA" if torch.cuda.is_available() else "CPU"}
    - CUDA Available: {"Yes" if torch.cuda.is_available() else "No"}
    
    ## Features
    - Automatic language detection
    - High-quality transcription using MMS
    - Optional translation to English
    - Text summarization
    - Question answering
    """)

if __name__ == "__main__":
    iface.launch(server_port=None)