Spaces:
Runtime error
Runtime error
stakelovelace
commited on
Commit
·
2094fe7
1
Parent(s):
3b6b2b0
daglie
Browse files
app.py
CHANGED
@@ -1,42 +1,41 @@
|
|
1 |
-
import pandas as pd
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
4 |
-
import csv
|
5 |
-
import yaml
|
6 |
from datasets import Dataset
|
|
|
|
|
|
|
7 |
|
8 |
import tensorflow as tf
|
9 |
# Check TensorFlow GPU availability
|
10 |
print("GPUs Available: ", tf.config.list_physical_devices('GPU'))
|
11 |
|
12 |
import os
|
|
|
13 |
os.environ['PYTORCH_MPS_HIGH_WATERMARK_RATIO'] = '0.0'
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def load_data_and_config(data_path):
|
16 |
"""Loads training data from CSV."""
|
17 |
data = []
|
18 |
with open(data_path, newline='', encoding='utf-8') as csvfile:
|
19 |
-
reader = csv.DictReader(csvfile, delimiter=';')
|
20 |
for row in reader:
|
21 |
-
data.append({'text': row['description']})
|
22 |
return data
|
23 |
|
24 |
-
def
|
25 |
-
"""Generates an API query using a fine-tuned model."""
|
26 |
-
input_ids = tokenizer.encode(prompt + f" Write an API query to {api_name} to get {desired_output}", return_tensors="pt")
|
27 |
-
input_ids = input_ids.to(model.device) # Ensure input_ids are on the same device as the model
|
28 |
-
output = model.generate(input_ids, max_length=256, temperature=0.7, do_sample=True) # Enable sampling with temperature control
|
29 |
-
query = tokenizer.decode(output[0], skip_special_tokens=True)
|
30 |
-
return f"{base_url}/{query}"
|
31 |
-
|
32 |
-
from transformers import TrainingArguments, Trainer
|
33 |
-
|
34 |
-
def train_model(model, tokenizer, data):
|
35 |
"""Trains the model using the Hugging Face Trainer API."""
|
36 |
-
# Encode data and prepare labels
|
37 |
inputs = [tokenizer(d['text'], max_length=512, truncation=True, padding='max_length', return_tensors="pt") for d in data]
|
38 |
dataset = Dataset.from_dict({
|
39 |
-
'input_ids': [x['input_ids'].squeeze() for x in inputs],
|
40 |
'labels': [x['input_ids'].squeeze() for x in inputs]
|
41 |
})
|
42 |
|
@@ -50,47 +49,53 @@ def train_model(model, tokenizer, data):
|
|
50 |
logging_dir='./logs',
|
51 |
logging_steps=10,
|
52 |
)
|
53 |
-
|
54 |
trainer = Trainer(
|
55 |
model=model,
|
56 |
args=training_args,
|
57 |
train_dataset=dataset,
|
58 |
tokenizer=tokenizer
|
59 |
)
|
60 |
-
|
61 |
-
# The Trainer handles the training loop internally
|
62 |
trainer.train()
|
63 |
|
64 |
-
# Optionally clear cache if using GPU or MPS
|
65 |
-
if torch.cuda.is_available():
|
66 |
-
torch.cuda.empty_cache()
|
67 |
-
elif torch.backends.mps.is_built():
|
68 |
-
torch.mps.empty_cache()
|
69 |
-
|
70 |
# Perform any remaining steps such as logging, saving, etc.
|
71 |
trainer.save_model()
|
72 |
|
73 |
def main(api_name, base_url):
|
74 |
-
#
|
75 |
data = load_data_and_config("train2.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
|
78 |
-
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-small")
|
79 |
-
model = AutoModelForCausalLM.from_pretrained("thenlper/gte-small")
|
80 |
-
|
81 |
-
# Train the model on your dataset
|
82 |
-
train_model(model, tokenizer, data)
|
83 |
|
84 |
-
# Save the fine-tuned model
|
85 |
model.save_pretrained("./fine_tuned_model")
|
86 |
tokenizer.save_pretrained("./fine_tuned_model")
|
87 |
|
88 |
-
# Example usage
|
89 |
prompt = "I need to retrieve the latest block on chain using a python script"
|
90 |
api_query = generate_api_query(model, tokenizer, prompt, "latest block on chain", api_name, base_url)
|
91 |
print(f"Generated code: {api_query}")
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
if __name__ == "__main__":
|
94 |
api_name = "Koios"
|
95 |
-
base_url = "https://api.koios.rest"
|
96 |
main(api_name, base_url)
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, BertLMHeadModel, BertForSequenceClassification
|
|
|
|
|
3 |
from datasets import Dataset
|
4 |
+
import pandas as pd
|
5 |
+
import csv
|
6 |
+
from transformers import TrainingArguments, Trainer
|
7 |
|
8 |
import tensorflow as tf
|
9 |
# Check TensorFlow GPU availability
|
10 |
print("GPUs Available: ", tf.config.list_physical_devices('GPU'))
|
11 |
|
12 |
import os
|
13 |
+
# Setting the environment variable for MPS
|
14 |
os.environ['PYTORCH_MPS_HIGH_WATERMARK_RATIO'] = '0.0'
|
15 |
|
16 |
+
def get_device():
|
17 |
+
"""Automatically chooses the best device."""
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
return torch.device('cuda')
|
20 |
+
elif torch.backends.mps.is_available():
|
21 |
+
return torch.device('mps')
|
22 |
+
else:
|
23 |
+
return torch.device('cpu')
|
24 |
+
|
25 |
def load_data_and_config(data_path):
|
26 |
"""Loads training data from CSV."""
|
27 |
data = []
|
28 |
with open(data_path, newline='', encoding='utf-8') as csvfile:
|
29 |
+
reader = csv.DictReader(csvfile, delimiter=';')
|
30 |
for row in reader:
|
31 |
+
data.append({'text': row['description']})
|
32 |
return data
|
33 |
|
34 |
+
def train_model(model, tokenizer, data, device):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"""Trains the model using the Hugging Face Trainer API."""
|
|
|
36 |
inputs = [tokenizer(d['text'], max_length=512, truncation=True, padding='max_length', return_tensors="pt") for d in data]
|
37 |
dataset = Dataset.from_dict({
|
38 |
+
'input_ids': [x['input_ids'].squeeze() for x in inputs],
|
39 |
'labels': [x['input_ids'].squeeze() for x in inputs]
|
40 |
})
|
41 |
|
|
|
49 |
logging_dir='./logs',
|
50 |
logging_steps=10,
|
51 |
)
|
52 |
+
|
53 |
trainer = Trainer(
|
54 |
model=model,
|
55 |
args=training_args,
|
56 |
train_dataset=dataset,
|
57 |
tokenizer=tokenizer
|
58 |
)
|
59 |
+
|
|
|
60 |
trainer.train()
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
# Perform any remaining steps such as logging, saving, etc.
|
63 |
trainer.save_model()
|
64 |
|
65 |
def main(api_name, base_url):
|
66 |
+
device = get_device() # Get the appropriate device
|
67 |
data = load_data_and_config("train2.csv")
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained("google/codegemma-2b")
|
69 |
+
model = AutoModelForCausalLM.from_pretrained('google/codegemma-2b', is_decoder=True)
|
70 |
+
#model = BertLMHeadModel.from_pretrained('google/codegemma-2b', is_decoder=True)
|
71 |
+
# Example assuming you have a prepared dataset for classification
|
72 |
+
#model = BertForSequenceClassification.from_pretrained('thenlper/gte-small', num_labels=2, is_decoder=True) # binary classification
|
73 |
+
model.to(device) # Move model to the appropriate device
|
74 |
|
75 |
+
train_model(model, tokenizer, data, device)
|
|
|
|
|
|
|
|
|
|
|
76 |
|
|
|
77 |
model.save_pretrained("./fine_tuned_model")
|
78 |
tokenizer.save_pretrained("./fine_tuned_model")
|
79 |
|
|
|
80 |
prompt = "I need to retrieve the latest block on chain using a python script"
|
81 |
api_query = generate_api_query(model, tokenizer, prompt, "latest block on chain", api_name, base_url)
|
82 |
print(f"Generated code: {api_query}")
|
83 |
|
84 |
+
def generate_api_query(model, tokenizer, prompt, desired_output, api_name, base_url):
|
85 |
+
# Prepare input prompt for the model, ensure tensors are compatible with PyTorch
|
86 |
+
input_ids = tokenizer.encode(f"{prompt} Write an API query to {api_name} to get {desired_output}", return_tensors="pt")
|
87 |
+
|
88 |
+
# Ensure input_ids are on the same device as the model
|
89 |
+
input_ids = input_ids.to(model.device)
|
90 |
+
|
91 |
+
# Generate query using model with temperature for randomness
|
92 |
+
output = model.generate(input_ids, max_length=256, temperature=0.1, do_sample=True)
|
93 |
+
|
94 |
+
# Decode the generated query tokens
|
95 |
+
query = tokenizer.decode(output[0], skip_special_tokens=True)
|
96 |
+
return f"{base_url}/{query}"
|
97 |
+
|
98 |
if __name__ == "__main__":
|
99 |
api_name = "Koios"
|
100 |
+
base_url = "https://api.koios.rest/v1"
|
101 |
main(api_name, base_url)
|
logs/events.out.tfevents.1714322367.172-3-0-7.lightspeed.irvnca.sbcglobal.net.39122.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83827f2cf7d20a317b97a09a293ebac35eb1e809d395d2ec317c06950d3f40c6
|
3 |
+
size 6596
|
results/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21b4ed4bb45f70522e361ac23b7d2e031a99706cbde4e236374a52b3d6b0b7a2
|
3 |
+
size 133588624
|