KingNish commited on
Commit
62e14ef
·
verified ·
1 Parent(s): b728f45

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -44
app.py CHANGED
@@ -21,18 +21,6 @@ def transcribe(audio):
21
 
22
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
23
 
24
- def client_fn(model):
25
- if "Mixtral" in model:
26
- return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
27
- elif "Llama" in model:
28
- return InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
29
- elif "Mistral" in model:
30
- return InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
31
- elif "Phi" in model:
32
- return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
33
- else:
34
- return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
35
-
36
  def randomize_seed_fn(seed: int) -> int:
37
  seed = random.randint(0, 999999)
38
  return seed
@@ -45,18 +33,17 @@ Respond in a normal, conversational manner while being friendly and helpful.
45
  [USER]
46
  """
47
 
48
- def models(text, model="Mixtral 8x7B", seed=42):
49
-
50
  seed = int(randomize_seed_fn(seed))
51
- generator = torch.Generator().manual_seed(seed)
52
-
53
- client = client_fn(model)
54
-
55
  generate_kwargs = dict(
56
  max_new_tokens=300,
57
  seed=seed
58
  )
59
-
60
  formatted_prompt = system_instructions1 + text + "[JARVIS]"
61
  stream = client.text_generation(
62
  formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
@@ -76,32 +63,23 @@ async def respond(audio, model, seed):
76
  await communicate.save(tmp_path)
77
  return tmp_path
78
 
79
- st.title("JARVIS⚡")
80
- st.markdown("### A personal Assistant of Tony Stark for YOU")
81
- st.markdown("### Voice Chat with your personal Assistant")
 
82
 
83
- with st.form("voice_form"):
84
- model_choice = st.selectbox("Choose a model", ['Mixtral 8x7B', 'Llama 3 8B', 'Mistral 7B v0.3', 'Phi 3 mini'], key="voice_model")
85
- audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], key="voice_audio")
86
- submit_button = st.form_submit_button("Submit")
87
 
88
- if submit_button:
89
- if audio_file is not None:
90
- with st.spinner("Transcribing and generating response..."):
91
- audio_bytes = audio_file.read()
92
- with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
93
- tmp_file.write(audio_bytes)
94
- tmp_path = tmp_file.name
95
- response = respond(tmp_path, model_choice, 42)
96
- st.audio(response, format='audio/wav')
97
 
98
- with st.form("text_form"):
99
- model_choice = st.selectbox("Choose a model", ['Mixtral 8x7B', 'Llama 3 8B', 'Mistral 7B v0.3', 'Phi 3 mini'], key="text_model")
100
- user_text = st.text_area("Enter your message:", key="text_input")
101
- submit_button = st.form_submit_button("Submit")
102
 
103
- if submit_button:
104
- if user_text:
105
- with st.spinner("Generating response..."):
106
- response = models(user_text, model_choice, 42)
107
- st.text_area("JARVIS Response", value=response, key="text_output", height=150)
 
21
 
22
  HF_TOKEN = os.environ.get("HF_TOKEN", None)
23
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  def randomize_seed_fn(seed: int) -> int:
25
  seed = random.randint(0, 999999)
26
  return seed
 
33
  [USER]
34
  """
35
 
36
+ def models(text, seed=42):
 
37
  seed = int(randomize_seed_fn(seed))
38
+ generator = torch.Generator().manual_seed(seed)
39
+
40
+ client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
41
+
42
  generate_kwargs = dict(
43
  max_new_tokens=300,
44
  seed=seed
45
  )
46
+
47
  formatted_prompt = system_instructions1 + text + "[JARVIS]"
48
  stream = client.text_generation(
49
  formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
 
63
  await communicate.save(tmp_path)
64
  return tmp_path
65
 
66
+ DESCRIPTION = """ # <center><b>JARVIS⚡</b></center>
67
+ ### <center>A personal Assistant of Tony Stark for YOU
68
+ ### <center>Voice Chat with your personal Assistant</center>
69
+ """
70
 
71
+ st.markdown(DESCRIPTION)
72
+ st.title("JARVIS")
 
 
73
 
74
+ uploaded_file = st.file_uploader("Upload audio file", type=["wav"])
75
+ seed = st.slider("Seed", min_value=0, max_value=999999, value=0)
76
+ if uploaded_file is not None:
77
+ # Convert the uploaded file to a BytesIO object
78
+ audio_bytes = uploaded_file.read()
 
 
 
 
79
 
80
+ # Process the audio using the respond function
81
+ response_path = asyncio.run(respond(audio_bytes, models, seed))
 
 
82
 
83
+ # Display the audio response
84
+ st.audio(response_path, format="audio/wav")
85
+ os.remove(response_path)