Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
import torchaudio | |
from audiocraft.models import MusicGen | |
import os | |
import numpy as np | |
import base64 | |
def load_model(): | |
model = MusicGen.get_pretrained('facebook/musicgen-small') | |
return model | |
def generate_music_tensors(description, duration: int): | |
model = load_model() | |
model.set_generation_params( | |
use_sampling=True, | |
top_k=250, | |
duration=duration | |
) | |
output = model.generate( | |
descriptions=[description], | |
progress=True, | |
return_tokens=True | |
) | |
return output[0] | |
def save_audio(samples: torch.Tensor): | |
"""Renders an audio player for the given audio samples and saves them to a local directory. | |
Args: | |
samples (torch.Tensor): a Tensor of decoded audio samples | |
with shapes [B, C, T] or [C, T] | |
sample_rate (int): sample rate audio should be displayed with. | |
save_path (str): path to the directory where audio should be saved. | |
""" | |
print("Samples (inside function): ", samples) | |
sample_rate = 30000 | |
save_path = "audio_output/" | |
assert samples.dim() == 2 or samples.dim() == 3 | |
samples = samples.detach().cpu() | |
if samples.dim() == 2: | |
samples = samples[None, ...] | |
for idx, audio in enumerate(samples): | |
audio_path = os.path.join(save_path, f"audio_{idx}.wav") | |
torchaudio.save(audio_path, audio, sample_rate) | |
def get_binary_file_downloader_html(bin_file, file_label='File'): | |
with open(bin_file, 'rb') as f: | |
data = f.read() | |
bin_str = base64.b64encode(data).decode() | |
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">Download {file_label}</a>' | |
return href | |
st.set_page_config( | |
page_icon= "musical_note", | |
page_title= "Music Gen" | |
) | |
def main(): | |
with st.sidebar: | |
st.header("""⚙️ Parameters ⚙️""",divider="rainbow") | |
st.text("") | |
st.subheader("1. Enter your music description.......") | |
text_area = st.text_area('Ex : 80s rock song with guitar and drums') | |
st.text('') | |
st.subheader("2. Select time duration (In Seconds)") | |
time_slider = st.slider("Select time duration (In Seconds)", 0, 20, 10) | |
st.title("""🎵 Text to Music Generator 🎵""") | |
st.text('') | |
left_co,right_co = st.columns(2) | |
left_co.write("""Music Generation using Meta AI, through a prompt""") | |
left_co.write(("""PS : First generation may take some time as it loads the full model and requirements""")) | |
#container1 = st.container() | |
#container1.write("""Music coupled with Image Generation using a prompt""") | |
#container1.write("""PS : First generation may take some time as it loads the full model and requirements""") | |
if st.sidebar.button('Generate !'): | |
gif_url = "https://media.giphy.com/media/26Fffy7jqQW8gVg8o/giphy.gif" | |
with right_co: | |
with st.spinner("Generating"): | |
st.image(gif_url,width=250) | |
with left_co: | |
st.text('') | |
st.text('') | |
st.text('') | |
st.text('') | |
st.text('') | |
st.text('') | |
st.subheader("Generated Music") | |
music_tensors = generate_music_tensors(text_area, time_slider) | |
save_music_file = save_audio(music_tensors) | |
audio_filepath = 'audio_output/audio_0.wav' | |
audio_file = open(audio_filepath, 'rb') | |
audio_bytes = audio_file.read() | |
st.audio(audio_bytes) | |
st.markdown(get_binary_file_downloader_html(audio_filepath, 'Audio'), unsafe_allow_html=True) | |
if __name__ == "__main__": | |
main() | |