KhadijaAsehnoune12
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -22,6 +22,20 @@ id2label = {
|
|
22 |
"9": "Trou de balle"
|
23 |
}
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def predict(image):
|
26 |
# Preprocess the image
|
27 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
@@ -40,8 +54,9 @@ def predict(image):
|
|
40 |
# Return the predicted label and confidence score
|
41 |
return predicted_label, f"Confidence: {confidence_score:.2f}"
|
42 |
|
43 |
-
|
44 |
-
|
|
|
45 |
<h1>Citrus Leaf Disease Classification</h1>
|
46 |
<p>Upload an image of a citrus leaf to classify its disease.</p>
|
47 |
<p>Supported diseases:</p>
|
@@ -57,11 +72,13 @@ gr.Markdown("""
|
|
57 |
<li>Mineuse des agrumes</li>
|
58 |
<li>Trou de balle</li>
|
59 |
</ul>
|
60 |
-
|
61 |
""")
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
22 |
"9": "Trou de balle"
|
23 |
}
|
24 |
|
25 |
+
# Define the image slider with examples of each disease
|
26 |
+
image_slider = [
|
27 |
+
{"image": "aleurocanthus_spiniferus.jpg", "label": "Aleurocanthus spiniferus"},
|
28 |
+
{"image": "chancre_citrique.jpg", "label": "Chancre citrique"},
|
29 |
+
{"image": "cochenille_blanche.jpg", "label": "Cochenille blanche"},
|
30 |
+
{"image": "deperissement_des_agrumes.jpg", "label": "Dépérissement des agrumes"},
|
31 |
+
{"image": "feuille_saine.jpg", "label": "Feuille saine"},
|
32 |
+
{"image": "jaunissement_des_feuilles.jpg", "label": "Jaunissement des feuilles"},
|
33 |
+
{"image": "maladie_de_loidium.jpg", "label": "Maladie de l'oïdium"},
|
34 |
+
{"image": "maladie_du_dragon_jaune.jpg", "label": "Maladie du dragon jaune"},
|
35 |
+
{"image": "mineuse_des_agrumes.jpg", "label": "Mineuse des agrumes"},
|
36 |
+
{"image": "trou_de_balle.jpg", "label": "Trou de balle"}
|
37 |
+
]
|
38 |
+
|
39 |
def predict(image):
|
40 |
# Preprocess the image
|
41 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
|
|
54 |
# Return the predicted label and confidence score
|
55 |
return predicted_label, f"Confidence: {confidence_score:.2f}"
|
56 |
|
57 |
+
# Create the Gradio interface
|
58 |
+
with gr.Blocks() as demo:
|
59 |
+
gr.Markdown("""
|
60 |
<h1>Citrus Leaf Disease Classification</h1>
|
61 |
<p>Upload an image of a citrus leaf to classify its disease.</p>
|
62 |
<p>Supported diseases:</p>
|
|
|
72 |
<li>Mineuse des agrumes</li>
|
73 |
<li>Trou de balle</li>
|
74 |
</ul>
|
75 |
+
<p>Example images:</p>
|
76 |
""")
|
77 |
+
image_slider_component = gr.Gallery(image_slider, label="Example Images")
|
78 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
79 |
+
label_output = gr.Textbox(label="Prediction")
|
80 |
+
btn = gr.Button("Classify")
|
81 |
+
|
82 |
+
btn.click(fn=predict, inputs=image_input, outputs=label_output)
|
83 |
+
|
84 |
+
demo.launch()
|