Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ from sentence_transformers import SentenceTransformer, util
|
|
3 |
from sklearn.decomposition import LatentDirichletAllocation
|
4 |
from sklearn.feature_extraction.text import CountVectorizer
|
5 |
from langdetect import detect, DetectorFactory
|
|
|
6 |
|
7 |
st.set_page_config(page_title="Multilingual Text Analysis System", layout="wide")
|
8 |
|
@@ -70,8 +71,9 @@ if st.button("Analyze"):
|
|
70 |
embeddings = embedding_agent.get_embeddings(words)
|
71 |
st.success("Word Embeddings Generated.")
|
72 |
|
73 |
-
st.write("Words
|
74 |
-
|
|
|
75 |
|
76 |
if len(words) > 1:
|
77 |
with st.spinner("Extracting topics..."):
|
@@ -93,4 +95,4 @@ if st.button("Analyze"):
|
|
93 |
st.warning("Please enter some text to analyze.")
|
94 |
|
95 |
st.sidebar.title("About")
|
96 |
-
st.sidebar.info("This app performs multilingual text analysis using various NLP techniques.")
|
|
|
3 |
from sklearn.decomposition import LatentDirichletAllocation
|
4 |
from sklearn.feature_extraction.text import CountVectorizer
|
5 |
from langdetect import detect, DetectorFactory
|
6 |
+
import numpy as np
|
7 |
|
8 |
st.set_page_config(page_title="Multilingual Text Analysis System", layout="wide")
|
9 |
|
|
|
71 |
embeddings = embedding_agent.get_embeddings(words)
|
72 |
st.success("Word Embeddings Generated.")
|
73 |
|
74 |
+
st.write("Words and their embeddings:")
|
75 |
+
for word, embedding in zip(words, embeddings):
|
76 |
+
st.write(f"{word}: {embedding}")
|
77 |
|
78 |
if len(words) > 1:
|
79 |
with st.spinner("Extracting topics..."):
|
|
|
95 |
st.warning("Please enter some text to analyze.")
|
96 |
|
97 |
st.sidebar.title("About")
|
98 |
+
st.sidebar.info("This app performs multilingual text analysis using various NLP techniques.")
|