Spaces:
Runtime error
Runtime error
File size: 8,360 Bytes
d358e26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# References:
# https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/models/components/transformer.py
# https://github.com/jaywalnut310/vits/blob/main/attentions.py
# https://github.com/pytorch-labs/gpt-fast/blob/main/model.py
import torch
import torch.nn as nn
import torch.nn.functional as F
class FFN(nn.Module):
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., gin_channels=0):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.filter_channels = filter_channels
self.kernel_size = kernel_size
self.p_dropout = p_dropout
self.gin_channels = gin_channels
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size, padding=kernel_size // 2)
self.drop = nn.Dropout(p_dropout)
self.act1 = nn.GELU(approximate="tanh")
def forward(self, x, x_mask):
x = self.conv_1(x * x_mask)
x = self.act1(x)
x = self.drop(x)
x = self.conv_2(x * x_mask)
return x * x_mask
class MultiHeadAttention(nn.Module):
def __init__(self, channels, out_channels, n_heads, p_dropout=0.):
super().__init__()
assert channels % n_heads == 0
self.channels = channels
self.out_channels = out_channels
self.n_heads = n_heads
self.p_dropout = p_dropout
self.k_channels = channels // n_heads
self.conv_q = torch.nn.Conv1d(channels, channels, 1)
self.conv_k = torch.nn.Conv1d(channels, channels, 1)
self.conv_v = torch.nn.Conv1d(channels, channels, 1)
# from https://nn.labml.ai/transformers/rope/index.html
self.query_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
self.key_rotary_pe = RotaryPositionalEmbeddings(self.k_channels * 0.5)
self.conv_o = torch.nn.Conv1d(channels, out_channels, 1)
self.drop = torch.nn.Dropout(p_dropout)
torch.nn.init.xavier_uniform_(self.conv_q.weight)
torch.nn.init.xavier_uniform_(self.conv_k.weight)
torch.nn.init.xavier_uniform_(self.conv_v.weight)
def forward(self, x, attn_mask=None):
q = self.conv_q(x)
k = self.conv_k(x)
v = self.conv_v(x)
x = self.attention(q, k, v, mask=attn_mask)
x = self.conv_o(x)
return x
def attention(self, query, key, value, mask=None):
b, d, t_s, t_t = (*key.size(), query.size(2))
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
query = self.query_rotary_pe(query) # [b, n_head, t, c // n_head]
key = self.key_rotary_pe(key)
output = F.scaled_dot_product_attention(query, key, value, attn_mask=mask, dropout_p=self.p_dropout if self.training else 0)
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
return output
# modified from https://github.com/sh-lee-prml/HierSpeechpp/blob/main/modules.py#L390
class DiTConVBlock(nn.Module):
"""
A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
"""
def __init__(self, hidden_channels, filter_channels, num_heads, kernel_size=3, p_dropout=0.1, gin_channels=0):
super().__init__()
self.norm1 = nn.LayerNorm(hidden_channels, elementwise_affine=False, eps=1e-6)
self.attn = MultiHeadAttention(hidden_channels, hidden_channels, num_heads, p_dropout)
self.norm2 = nn.LayerNorm(hidden_channels, elementwise_affine=False, eps=1e-6)
self.mlp = FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout)
self.adaLN_modulation = nn.Sequential(
nn.Linear(gin_channels, hidden_channels) if gin_channels != hidden_channels else nn.Identity(),
nn.SiLU(),
nn.Linear(hidden_channels, 6 * hidden_channels, bias=True)
)
def forward(self, x, c, x_mask):
"""
Args:
x : [batch_size, channel, time]
c : [batch_size, channel]
x_mask : [batch_size, 1, time]
return the same shape as x
"""
x = x * x_mask
attn_mask = x_mask.unsqueeze(1) * x_mask.unsqueeze(-1) # shape: [batch_size, 1, time, time]
# attn_mask = attn_mask.to(torch.bool)
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).unsqueeze(2).chunk(6, dim=1) # shape: [batch_size, channel, 1]
x = x + gate_msa * self.attn(self.modulate(self.norm1(x.transpose(1,2)).transpose(1,2), shift_msa, scale_msa), attn_mask) * x_mask
x = x + gate_mlp * self.mlp(self.modulate(self.norm2(x.transpose(1,2)).transpose(1,2), shift_mlp, scale_mlp), x_mask)
# no condition version
# x = x + self.attn(self.norm1(x.transpose(1,2)).transpose(1,2), attn_mask)
# x = x + self.mlp(self.norm1(x.transpose(1,2)).transpose(1,2), x_mask)
return x
@staticmethod
def modulate(x, shift, scale):
return x * (1 + scale) + shift
class RotaryPositionalEmbeddings(nn.Module):
"""
## RoPE module
Rotary encoding transforms pairs of features by rotating in the 2D plane.
That is, it organizes the $d$ features as $\frac{d}{2}$ pairs.
Each pair can be considered a coordinate in a 2D plane, and the encoding will rotate it
by an angle depending on the position of the token.
"""
def __init__(self, d: int, base: int = 10_000):
r"""
* `d` is the number of features $d$
* `base` is the constant used for calculating $\Theta$
"""
super().__init__()
self.base = base
self.d = int(d)
self.cos_cached = None
self.sin_cached = None
def _build_cache(self, x: torch.Tensor):
r"""
Cache $\cos$ and $\sin$ values
"""
# Return if cache is already built
if self.cos_cached is not None and x.shape[0] <= self.cos_cached.shape[0]:
return
# Get sequence length
seq_len = x.shape[0]
# $\Theta = {\theta_i = 10000^{-\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
theta = 1.0 / (self.base ** (torch.arange(0, self.d, 2).float() / self.d)).to(x.device)
# Create position indexes `[0, 1, ..., seq_len - 1]`
seq_idx = torch.arange(seq_len, device=x.device).float().to(x.device)
# Calculate the product of position index and $\theta_i$
idx_theta = torch.einsum("n,d->nd", seq_idx, theta)
# Concatenate so that for row $m$ we have
# $[m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}, m \theta_0, m \theta_1, ..., m \theta_{\frac{d}{2}}]$
idx_theta2 = torch.cat([idx_theta, idx_theta], dim=1)
# Cache them
self.cos_cached = idx_theta2.cos()[:, None, None, :]
self.sin_cached = idx_theta2.sin()[:, None, None, :]
def _neg_half(self, x: torch.Tensor):
# $\frac{d}{2}$
d_2 = self.d // 2
# Calculate $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
return torch.cat([-x[:, :, :, d_2:], x[:, :, :, :d_2]], dim=-1)
def forward(self, x: torch.Tensor):
"""
* `x` is the Tensor at the head of a key or a query with shape `[seq_len, batch_size, n_heads, d]`
"""
# Cache $\cos$ and $\sin$ values
x = x.permute(2, 0, 1, 3) # b h t d -> t b h d
self._build_cache(x)
# Split the features, we can choose to apply rotary embeddings only to a partial set of features.
x_rope, x_pass = x[..., : self.d], x[..., self.d :]
# Calculate
# $[-x^{(\frac{d}{2} + 1)}, -x^{(\frac{d}{2} + 2)}, ..., -x^{(d)}, x^{(1)}, x^{(2)}, ..., x^{(\frac{d}{2})}]$
neg_half_x = self._neg_half(x_rope)
x_rope = (x_rope * self.cos_cached[: x.shape[0]]) + (neg_half_x * self.sin_cached[: x.shape[0]])
return torch.cat((x_rope, x_pass), dim=-1).permute(1, 2, 0, 3) # t b h d -> b h t d
class Transpose(nn.Identity):
"""(N, T, D) -> (N, D, T)"""
def forward(self, input: torch.Tensor) -> torch.Tensor:
return input.transpose(1, 2)
|