Spaces:
Runtime error
Runtime error
import gradio as gr | |
import note_seq | |
import numpy as np | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("Katpeeler/midi_model_1") | |
model = AutoModelForCausalLM.from_pretrained("Katpeeler/midi_model_1") | |
NOTE_LENGTH_16TH_120BPM = 0.25 * 60 / 120 | |
BAR_LENGTH_120BPM = 4.0 * 60 / 120 | |
SAMPLE_RATE=44100 | |
def token_sequence_to_note_sequence(token_sequence, use_program=True, use_drums=True, instrument_mapper=None, only_piano=False): | |
if isinstance(token_sequence, str): | |
token_sequence = token_sequence.split() | |
note_sequence = empty_note_sequence() | |
# Render all notes. | |
current_program = 1 | |
current_is_drum = False | |
current_instrument = 0 | |
track_count = 0 | |
for token_index, token in enumerate(token_sequence): | |
if token == "PIECE_START": | |
pass | |
elif token == "PIECE_END": | |
print("The end.") | |
break | |
elif token == "TRACK_START": | |
current_bar_index = 0 | |
track_count += 1 | |
pass | |
elif token == "TRACK_END": | |
pass | |
elif token == "KEYS_START": | |
pass | |
elif token == "KEYS_END": | |
pass | |
elif token.startswith("KEY="): | |
pass | |
elif token.startswith("INST"): | |
instrument = token.split("=")[-1] | |
if instrument != "DRUMS" and use_program: | |
if instrument_mapper is not None: | |
if instrument in instrument_mapper: | |
instrument = instrument_mapper[instrument] | |
current_program = int(instrument) | |
current_instrument = track_count | |
current_is_drum = False | |
if instrument == "DRUMS" and use_drums: | |
current_instrument = 0 | |
current_program = 0 | |
current_is_drum = True | |
elif token == "BAR_START": | |
current_time = current_bar_index * BAR_LENGTH_120BPM | |
current_notes = {} | |
elif token == "BAR_END": | |
current_bar_index += 1 | |
pass | |
elif token.startswith("NOTE_ON"): | |
pitch = int(token.split("=")[-1]) | |
note = note_sequence.notes.add() | |
note.start_time = current_time | |
note.end_time = current_time + 4 * NOTE_LENGTH_16TH_120BPM | |
note.pitch = pitch | |
note.instrument = current_instrument | |
note.program = current_program | |
note.velocity = 80 | |
note.is_drum = current_is_drum | |
current_notes[pitch] = note | |
elif token.startswith("NOTE_OFF"): | |
pitch = int(token.split("=")[-1]) | |
if pitch in current_notes: | |
note = current_notes[pitch] | |
note.end_time = current_time | |
elif token.startswith("TIME_DELTA"): | |
delta = float(token.split("=")[-1]) * NOTE_LENGTH_16TH_120BPM | |
current_time += delta | |
elif token.startswith("DENSITY="): | |
pass | |
elif token == "[PAD]": | |
pass | |
else: | |
#print(f"Ignored token {token}.") | |
pass | |
# Make the instruments right. | |
instruments_drums = [] | |
for note in note_sequence.notes: | |
pair = [note.program, note.is_drum] | |
if pair not in instruments_drums: | |
instruments_drums += [pair] | |
note.instrument = instruments_drums.index(pair) | |
if only_piano: | |
for note in note_sequence.notes: | |
if not note.is_drum: | |
note.instrument = 0 | |
note.program = 0 | |
return note_sequence | |
def empty_note_sequence(qpm=120.0, total_time=0.0): | |
note_sequence = note_seq.protobuf.music_pb2.NoteSequence() | |
note_sequence.tempos.add().qpm = qpm | |
note_sequence.ticks_per_quarter = note_seq.constants.STANDARD_PPQ | |
note_sequence.total_time = total_time | |
return note_sequence | |
def process(text): | |
input_ids = tokenizer.encode(text, return_tensors="pt") | |
generated_ids = model.generate(input_ids, max_length=500) | |
generated_sequence = tokenizer.decode(generated_ids[0]) | |
# Convert text of notes to audio | |
note_sequence = token_sequence_to_note_sequence(generated_sequence) | |
synth = note_seq.midi_synth.synthesize | |
array_of_floats = synth(note_sequence, sample_rate=SAMPLE_RATE) | |
note_plot = note_seq.plot_sequence(note_sequence, False) | |
array_of_floats /=1.414 | |
array_of_floats *= 32767 | |
int16_data = array_of_floats.astype(np.int16) | |
return SAMPLE_RATE, int16_data | |
title = "Music generation with GPT-2" | |
iface = gr.Interface( | |
fn=process, | |
inputs=["text"], | |
outputs=['audio'], | |
title=title, | |
#examples=[["PIECE_START"], ["PIECE_START STYLE=JSFAKES GENRE=JSFAKES TRACK_START INST=48 BAR_START NOTE_ON=61"]], | |
article="This demo is inspired in the notebook from https://huggingface.co/TristanBehrens/js-fakes-4bars" | |
) | |
iface.launch(debug=True) |