Update app.py
Browse files
app.py
CHANGED
@@ -109,7 +109,7 @@ def respond(message, history):
|
|
109 |
functions_metadata = [
|
110 |
{"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
|
111 |
{"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
|
112 |
-
{"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}
|
113 |
{"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
|
114 |
]
|
115 |
|
@@ -153,13 +153,16 @@ def respond(message, history):
|
|
153 |
yield output
|
154 |
elif json_data["name"] == "image_generation":
|
155 |
query = json_data["arguments"]["query"]
|
|
|
|
|
156 |
try:
|
157 |
-
|
|
|
158 |
except:
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
elif json_data["name"] == "image_qna":
|
164 |
inputs = llava(message, history)
|
165 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
|
|
|
109 |
functions_metadata = [
|
110 |
{"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
|
111 |
{"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}},
|
112 |
+
{"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}}, "required": ["query"]}}},
|
113 |
{"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}},
|
114 |
]
|
115 |
|
|
|
153 |
yield output
|
154 |
elif json_data["name"] == "image_generation":
|
155 |
query = json_data["arguments"]["query"]
|
156 |
+
gr.Info("Generating Image, Please wait 10 sec...")
|
157 |
+
yield "Generating Image, Please wait 10 sec..."
|
158 |
try:
|
159 |
+
image = image_gen(f"{str(query)}")
|
160 |
+
yield gr.Image(image[1])
|
161 |
except:
|
162 |
+
client_sd3 = InferenceClient("stabilityai/stable-diffusion-3-medium-diffusers")
|
163 |
+
seed = random.randint(0,999999)
|
164 |
+
image = client_sd3.text_to_image(query, negative_prompt=f"{seed}")
|
165 |
+
yield gr.Image(image)
|
166 |
elif json_data["name"] == "image_qna":
|
167 |
inputs = llava(message, history)
|
168 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True})
|