File size: 5,845 Bytes
f7701c2
 
 
 
c645901
f7701c2
 
 
 
 
c645901
bb07b3d
7995d71
 
f7701c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7995d71
bb07b3d
 
 
 
 
 
f7701c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ad6e28
f7701c2
 
 
 
 
 
 
 
 
 
 
 
 
 
fb3d5fb
 
f7701c2
 
7995d71
f7701c2
 
 
bb07b3d
fb3d5fb
f7701c2
c56dd4d
 
 
f7701c2
 
 
 
 
 
 
 
 
 
 
c56dd4d
 
 
 
 
f7701c2
 
 
 
 
 
 
 
 
10988ef
7995d71
 
 
 
 
 
 
 
 
 
 
 
 
f7701c2
 
7995d71
f7701c2
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import subprocess
from PIL import Image
import io
import gradio as gr
from transformers import AutoProcessor, TextIteratorStreamer
from transformers import Idefics2ForConditionalGeneration
import torch
from peft import LoraConfig
from transformers import AutoProcessor, BitsAndBytesConfig, IdeficsForVisionText2Text

# read from index.html
with open('index.html', encoding='utf-8') as file:
    html_content = file.read()

DEVICE = torch.device("cuda")

USE_LORA = False
USE_QLORA = True

if USE_QLORA or USE_LORA:
    lora_config = LoraConfig(
        r=8,
        lora_alpha=8,
        lora_dropout=0.1,
        target_modules='.*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$',
        use_dora=False if USE_QLORA else True,
        init_lora_weights="gaussian"
    )
    if USE_QLORA:
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16
        )

    # Model Idefics2
    # model = Idefics2ForConditionalGeneration.from_pretrained(
    #     "jihadzakki/idefics2-8b-vqarad-delta",
    #     torch_dtype=torch.float16,
    #     quantization_config=bnb_config
    # )

processor = AutoProcessor.from_pretrained(
    "HuggingFaceM4/idefics2-8b",
)

def format_answer(image, question, history):
    try:
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image"},
                    {"type": "text", "text": question}
                ]
            }
        ]

        text = processor.apply_chat_template(messages, add_generation_prompt=True)
        inputs = processor(text=[text.strip()], images=[image], return_tensors="pt", padding=True)
        inputs = {key: value.to(DEVICE) for key, value in inputs.items()}
        generated_ids = model.generate(**inputs, max_new_tokens=64)
        generated_texts = processor.batch_decode(generated_ids[:, inputs["input_ids"].size(1):], skip_special_tokens=True)[0]

        history.append((image, f"Question: {question} | Answer: {generated_texts}"))

        # Store the predicted answer in a variable before deleting intermediate variables
        predicted_answer = f"Predicted Answer: {generated_texts}"

        # Clear the cache and delete unnecessary variables
        del inputs
        del generated_ids
        del generated_texts
        torch.cuda.empty_cache()

        return predicted_answer, history
    except Exception as e:
        # Clear the cache in case of an error
        torch.cuda.empty_cache()
        return f"Error: {str(e)}", history

def clear_history():
    return None, "", [], ""

def save_feedback(feedback):
    return "Thank you for your feedback!"

def display_history(history):
    log_entries = []
    for img, text in history:
        log_entries.append((img, text))
    return log_entries

# Build the Visual QA application using Gradio with improvements
with gr.Blocks(
    theme=gr.themes.Soft(
        font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"],
        primary_hue=gr.themes.colors.green,
        secondary_hue=gr.themes.colors.green,
    )
) as VisualQAApp:
    gr.HTML(html_content)  # Display the HTML content

    with gr.Row():
        with gr.Column():
            image_input = gr.Image(label="Image", type="pil")
        with gr.Column():
            question_input = gr.Textbox(show_label=False, placeholder="Enter your question here...")
            with gr.Row():
                submit_button = gr.Button("Submit", variant="primary")
                clear_button = gr.Button("๐Ÿ—‘๏ธ Clear")
            answer_output = gr.Textbox(label="Result Prediction")

    history_state = gr.State([])  # Initialize the history state

    submit_button.click(
        format_answer,
        inputs=[image_input, question_input, history_state],
        outputs=[answer_output, history_state],
        show_progress=True
    )

    clear_button.click(
        clear_history,
        inputs=[],
        outputs=[image_input, question_input, answer_output, history_state]
    )

    with gr.Row():
        history_gallery = gr.Gallery(label="History Log", elem_id="history_log")
        submit_button.click(
            display_history,
            inputs=[history_state],
            outputs=[history_gallery]
        )

    gr.Markdown("## Example of Input with Text")
    with gr.Row():
        with gr.Column():
            gr.Examples(
                examples=[
                    ["sample_data/images/Gambar-Otak-Slake.jpg", "What modality is used to take this image?"],
                    ["sample_data/images/Gambar-Otak-Slake2.jpg", "Which part of the body does this image belong to?"]
                ],
                inputs=[image_input, question_input],
                outputs=[answer_output, history_state],
                label="Upload image",
                elem_id="Prompt"
            )

    with gr.Accordion("Help", open=False):
        gr.Markdown("**Upload image**: Select the chest X-ray image you want to analyze.")
        gr.Markdown("**Enter your question**: Type the question you have about the image, such as 'What modality is used to take this image?'")
        gr.Markdown("**Submit**: Click the submit button to get the prediction from the model.")

    with gr.Accordion("Feedback", open=False):
        gr.Markdown("**We value your feedback!** Please provide any feedback you have about this application.")
        feedback_input = gr.Textbox(label="Feedback", lines=4)
        submit_feedback_button = gr.Button("Submit Feedback")

        submit_feedback_button.click(
            save_feedback,
            inputs=[feedback_input],
            outputs=[feedback_input]
        )

VisualQAApp.launch(share=True, debug=True)