Spaces:
Runtime error
Runtime error
File size: 5,845 Bytes
f7701c2 c645901 f7701c2 c645901 bb07b3d 7995d71 f7701c2 7995d71 bb07b3d f7701c2 0ad6e28 f7701c2 fb3d5fb f7701c2 7995d71 f7701c2 bb07b3d fb3d5fb f7701c2 c56dd4d f7701c2 c56dd4d f7701c2 10988ef 7995d71 f7701c2 7995d71 f7701c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import os
import subprocess
from PIL import Image
import io
import gradio as gr
from transformers import AutoProcessor, TextIteratorStreamer
from transformers import Idefics2ForConditionalGeneration
import torch
from peft import LoraConfig
from transformers import AutoProcessor, BitsAndBytesConfig, IdeficsForVisionText2Text
# read from index.html
with open('index.html', encoding='utf-8') as file:
html_content = file.read()
DEVICE = torch.device("cuda")
USE_LORA = False
USE_QLORA = True
if USE_QLORA or USE_LORA:
lora_config = LoraConfig(
r=8,
lora_alpha=8,
lora_dropout=0.1,
target_modules='.*(text_model|modality_projection|perceiver_resampler).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$',
use_dora=False if USE_QLORA else True,
init_lora_weights="gaussian"
)
if USE_QLORA:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16
)
# Model Idefics2
# model = Idefics2ForConditionalGeneration.from_pretrained(
# "jihadzakki/idefics2-8b-vqarad-delta",
# torch_dtype=torch.float16,
# quantization_config=bnb_config
# )
processor = AutoProcessor.from_pretrained(
"HuggingFaceM4/idefics2-8b",
)
def format_answer(image, question, history):
try:
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": question}
]
}
]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=[text.strip()], images=[image], return_tensors="pt", padding=True)
inputs = {key: value.to(DEVICE) for key, value in inputs.items()}
generated_ids = model.generate(**inputs, max_new_tokens=64)
generated_texts = processor.batch_decode(generated_ids[:, inputs["input_ids"].size(1):], skip_special_tokens=True)[0]
history.append((image, f"Question: {question} | Answer: {generated_texts}"))
# Store the predicted answer in a variable before deleting intermediate variables
predicted_answer = f"Predicted Answer: {generated_texts}"
# Clear the cache and delete unnecessary variables
del inputs
del generated_ids
del generated_texts
torch.cuda.empty_cache()
return predicted_answer, history
except Exception as e:
# Clear the cache in case of an error
torch.cuda.empty_cache()
return f"Error: {str(e)}", history
def clear_history():
return None, "", [], ""
def save_feedback(feedback):
return "Thank you for your feedback!"
def display_history(history):
log_entries = []
for img, text in history:
log_entries.append((img, text))
return log_entries
# Build the Visual QA application using Gradio with improvements
with gr.Blocks(
theme=gr.themes.Soft(
font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"],
primary_hue=gr.themes.colors.green,
secondary_hue=gr.themes.colors.green,
)
) as VisualQAApp:
gr.HTML(html_content) # Display the HTML content
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Image", type="pil")
with gr.Column():
question_input = gr.Textbox(show_label=False, placeholder="Enter your question here...")
with gr.Row():
submit_button = gr.Button("Submit", variant="primary")
clear_button = gr.Button("๐๏ธ Clear")
answer_output = gr.Textbox(label="Result Prediction")
history_state = gr.State([]) # Initialize the history state
submit_button.click(
format_answer,
inputs=[image_input, question_input, history_state],
outputs=[answer_output, history_state],
show_progress=True
)
clear_button.click(
clear_history,
inputs=[],
outputs=[image_input, question_input, answer_output, history_state]
)
with gr.Row():
history_gallery = gr.Gallery(label="History Log", elem_id="history_log")
submit_button.click(
display_history,
inputs=[history_state],
outputs=[history_gallery]
)
gr.Markdown("## Example of Input with Text")
with gr.Row():
with gr.Column():
gr.Examples(
examples=[
["sample_data/images/Gambar-Otak-Slake.jpg", "What modality is used to take this image?"],
["sample_data/images/Gambar-Otak-Slake2.jpg", "Which part of the body does this image belong to?"]
],
inputs=[image_input, question_input],
outputs=[answer_output, history_state],
label="Upload image",
elem_id="Prompt"
)
with gr.Accordion("Help", open=False):
gr.Markdown("**Upload image**: Select the chest X-ray image you want to analyze.")
gr.Markdown("**Enter your question**: Type the question you have about the image, such as 'What modality is used to take this image?'")
gr.Markdown("**Submit**: Click the submit button to get the prediction from the model.")
with gr.Accordion("Feedback", open=False):
gr.Markdown("**We value your feedback!** Please provide any feedback you have about this application.")
feedback_input = gr.Textbox(label="Feedback", lines=4)
submit_feedback_button = gr.Button("Submit Feedback")
submit_feedback_button.click(
save_feedback,
inputs=[feedback_input],
outputs=[feedback_input]
)
VisualQAApp.launch(share=True, debug=True)
|