File size: 18,169 Bytes
ced0ab7 800733e ced0ab7 7dbd8ce ced0ab7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import os
import io
import gradio as gr
import pandas as pd
import datetime
import zipfile
import numpy as np
from constants import *
from draw_sub_dimension import *
from huggingface_hub import Repository
HF_TOKEN = os.environ.get("HF_TOKEN")
global data_component, filter_component
def add_new_eval(
input_file,
model_name_textbox: str, # required
revision_name_textbox: str,
access_type: str,
model_link: str, # required
team_name: str,
contact_email: str, # required
model_publish: str,
model_resolution: str,
model_frame: str,
model_fps: str,
model_video_length: str,
model_checkpoint: str,
model_commit_id: str,
model_video_format: str
):
if input_file is None:
return "Error! Empty file!"
if model_link == '' or model_name_textbox == '' or contact_email == '':
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
now = datetime.datetime.now()
upload_date = now.strftime("%Y-%m-%d") # Capture update time
upload_time = now.strftime("%Y-%m-%d_%H-%M-%S")
filename = f"{model_name_textbox}_{upload_time}"
with open(f'{SUBMISSION_NAME}/{filename}.zip','wb') as f:
f.write(input_file)
csv_data = pd.read_csv(CSV_PATH)
if revision_name_textbox == '':
col = csv_data.shape[0]
model_name = model_name_textbox.replace(',',' ')
else:
model_name = revision_name_textbox.replace(',',' ')
model_name_list = csv_data['Model Name (clickable)']
name_list = [name.split(']')[0][1:] for name in model_name_list]
if revision_name_textbox not in name_list:
col = csv_data.shape[0]
else:
col = name_list.index(revision_name_textbox)
model_name = '[' + model_name + '](' + model_link + ')'
folder = f'{SUBMISSION_NAME}/{filename}'
os.makedirs(folder, exist_ok=True)
with zipfile.ZipFile(io.BytesIO(input_file), 'r') as zip_ref:
zip_ref.extractall(folder)
required_files = [
"_consistent_attr_score.csv",
"_dynamic_attr_score.csv",
"_spatial_score.csv",
"_motion_score.csv",
"_motion_back_fore.csv",
"_action_binding_score.csv",
"_object_interactions_score.csv",
"_numeracy_video.csv",
]
score_1 = score_2 = score_3 = score_4 = score_5 = score_6 = score_7 = "N/A"
color_score = shape_score = texture_score = coexist = acc = acc_score = "N/A"
motion_level = motion_acc = common_score = uncommon_score = physical_score = social_score = "N/A"
for i,suffix in enumerate(required_files):
for sub_folder in os.listdir(folder):
if sub_folder.startswith('.') or sub_folder.startswith('__'):
print(f"Skip the file: {sub_folder}")
continue
cur_sub_folder = os.path.join(folder, sub_folder) #user_upload_zip_name
if os.path.isdir(cur_sub_folder):
for file in os.listdir(cur_sub_folder):
if file.endswith(suffix):
print("FILE exist",file)
filepath = os.path.join(cur_sub_folder,file)
if i==0:
score_1 = read_score(filepath)
color_score, shape_score, texture_score = sub_consist_attr(filepath)
elif i==1:
score_2 = read_score(filepath)
elif i==2:
score_3 = read_score(filepath)
coexist, acc, acc_score = sub_spatial(filepath)
elif i==3:
score_4 = read_score(filepath)
elif i==4:
motion_level, motion_acc = sub_motion(filepath)
elif i==5:
score_5 = read_score(filepath)
common_score,uncommon_score = sub_action(filepath)
elif i==6:
score_6 = read_score(filepath)
physical_score, social_score = sub_interaction(filepath)
elif i==7:
score_7 = read_score(filepath)
# add new data
if team_name =='' or 'compbench' in team_name.lower():
evaluate_team = ("User Upload")
else:
evaluate_team = team_name
new_data = [model_name,evaluate_team,upload_date,score_1,score_2,score_3,score_4,score_5,score_6,score_7,color_score, shape_score, texture_score,coexist, acc, acc_score,motion_level, motion_acc,common_score,uncommon_score,physical_score, social_score]
print(new_data)
csv_data.loc[col] = new_data
csv_data = csv_data.to_csv(CSV_PATH, index=False)
new_info = [model_name,upload_time,team_name,model_publish,model_resolution,model_frame,model_fps,model_video_length,model_checkpoint,model_commit_id,model_video_format,access_type,contact_email,model_link]
with open(INFO_PATH, mode='a', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow(new_info)
submission_repo.push_to_hub()
print("success update", model_name)
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
def calculate_selected_score(df, selected_columns):
selected_task = [i for i in selected_columns if i in TASK_INFO]
selected_task_score = df[selected_task].mean(axis=1, skipna=True)
if selected_task_score.isna().any().any():
return selected_task_score.fillna(0.0)
return selected_task_score.fillna(0.0)
def get_final_score(df, selected_columns):
df[TASK_INFO] = df[TASK_INFO].replace("N/A", np.nan)
df[TASK_INFO] = df[TASK_INFO].apply(pd.to_numeric, errors='coerce')
final_score = df[TASK_INFO].mean(axis=1, skipna=True)
final_score = round(final_score,4)
if 'Total Avg. Score' in df:
df['Total Avg. Score'] = final_score
else:
df.insert(1, 'Total Avg. Score', final_score)
selected_score = calculate_selected_score(df, selected_columns)
selected_score = round(selected_score,4)
if 'Selected Avg. Score' in df:
df['Selected Avg. Score'] = selected_score
else:
df.insert(1, 'Selected Avg. Score', selected_score)
return df
def get_baseline_df():
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(CSV_PATH)
df = get_final_score(df, checkbox_group.value)
df = df.sort_values(by="Selected Avg. Score", ascending=False)
present_columns = MODEL_INFO + checkbox_group.value
df = df[present_columns]
df = df[df['Evaluated by'] == 'T2V-CompBench Team']
return df
def get_baseline_df_sub():
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
submission_repo.git_pull()
df = pd.read_csv(CSV_PATH)
df = get_final_score(df, checkbox_group.value)
df = df.sort_values(by="Selected Avg. Score", ascending=False)
present_columns = MODEL_INFO[:-2] + SUB_TASK_INFO + MODEL_INFO[-2:]
print(present_columns)
df = df[present_columns]
df = df[df['Evaluated by'] == 'T2V-CompBench Team']
return df
def get_all_df(selected_columns, csv=CSV_PATH):
df = pd.read_csv(csv)
df = get_final_score(df, selected_columns)
df = df.sort_values(by="Selected Avg. Score", ascending=False)
return df
# select function
def category_checkbox_change(selected_columns, only_compbench_team):
updated_data = get_all_df(selected_columns, CSV_PATH)
if only_compbench_team:
updated_data = updated_data[updated_data['Evaluated by'] == 'T2V-CompBench Team']
# columns:
selected_columns = [item for item in TASK_INFO if item in selected_columns]
present_columns = MODEL_INFO + selected_columns
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by="Selected Avg. Score", ascending=False)
updated_headers = present_columns
update_datatype = [DATA_TITLE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers]
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component
def category_checkbox_change_sub(selected_columns, selected_columns_sub,only_compbench_team):
updated_data = get_all_df(selected_columns, CSV_PATH)
if only_compbench_team:
updated_data = updated_data[updated_data['Evaluated by'] == 'T2V-CompBench Team']
# columns:
selected_columns = [item for item in SUB_TASK_INFO if item in selected_columns_sub]
present_columns = MODEL_INFO[:-2] + selected_columns + MODEL_INFO[-2:]
updated_data = updated_data[present_columns]
updated_data = updated_data.sort_values(by="Selected Avg. Score", ascending=False)
updated_headers = present_columns
update_datatype = [SUB_DATA_TITLE_TYPE[SUB_COLUMN_NAMES.index(x)] for x in updated_headers]
filter_component = gr.components.Dataframe(
value=updated_data,
headers=updated_headers,
type="pandas",
datatype=update_datatype,
interactive=False,
visible=True,
)
return filter_component
block = gr.Blocks()
with block:
gr.Markdown(
LEADERBOARD_INTRODUCTION
)
gr.HTML(
LEADERBOARD_INTRODUCTION_HTML
)
gr.Markdown(
LEADERBOARD_INTRODUCTION_2
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# Table 1
with gr.TabItem("๐ T2V-CompBench", elem_id="compbench-tab-table", id=1):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=14,
)
with gr.Row():
compbench_team_filter = gr.Checkbox(
label="Evaluated by T2V-CompBench Team (Uncheck to view all submissions)",
value=True,
interactive=True
)
with gr.Row():
# selection for column part:
checkbox_group = gr.CheckboxGroup(
choices=TASK_INFO,
value=TASK_INFO,
label="Evaluation Category",
interactive=True,
)
data_component = gr.components.Dataframe(
value=get_baseline_df,
headers=COLUMN_NAMES,
type="pandas",
datatype=DATA_TITLE_TYPE,
interactive=False,
visible=True,
)
checkbox_group.change(fn=category_checkbox_change, inputs=[checkbox_group, compbench_team_filter], outputs=data_component)
compbench_team_filter.change(fn=category_checkbox_change, inputs=[checkbox_group, compbench_team_filter], outputs=data_component)
# Table 2
with gr.TabItem("๐๏ธ Sub-Dimension", elem_id="compbench-tab-table", id=2):
with gr.Row():
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=14,
)
with gr.Row():
compbench_team_filter_sub = gr.Checkbox(
label="Evaluated by T2V-CompBench Team (Uncheck to view all submissions)",
value=True,
interactive=True
)
with gr.Row():
# selection for column part:
checkbox_group_sub = gr.CheckboxGroup(
choices=SUB_TASK_INFO,
value=SUB_TASK_INFO,
label="Evaluation Sub-Dimensions",
interactive=True,
)
data_component_sub = gr.components.Dataframe(
value=get_baseline_df_sub,
headers=SUB_COLUMN_NAMES,
type="pandas",
datatype=SUB_DATA_TITLE_TYPE,
interactive=False,
visible=True,
)
checkbox_group_sub.change(fn=category_checkbox_change_sub, inputs=[checkbox_group,checkbox_group_sub, compbench_team_filter_sub], outputs=data_component_sub)
compbench_team_filter_sub.change(fn=category_checkbox_change_sub, inputs=[checkbox_group,checkbox_group_sub, compbench_team_filter_sub], outputs=data_component_sub)
# Table 3
with gr.TabItem("๐ About", elem_id="compbench-tab-table", id=3):
gr.Markdown(LEADERBOARD_INFO, elem_classes="markdown-text")
# Table 4: table submission
with gr.TabItem("๐ Submit here! ", elem_id="compbench-tab-table", id=4):
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# โ๏ธโจ Submit your model evaluation CSV files here!", elem_classes="markdown-text")
with gr.Row():
gr.Markdown("Here is a required field", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model Name", placeholder="Required field"
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name(Optional)", placeholder="If you need to update the previous results, please fill in this line"
)
access_type = gr.Dropdown(choices=["Open Source", "Ready to Open Source", "API", "Close"], value=None,label="Please select the way user can access your model. You can update the content by revision_name, or contact the T2V-CompBench Team.")
with gr.Column():
model_link = gr.Textbox(
label="Project Page/Paper Link/Github/HuggingFace Repo", placeholder="Required field. If filling in the wrong information, your results may be removed."
)
team_name = gr.Textbox(
label="Your Team Name(If left blank, it will be user upload)", placeholder="User Upload"
)
contact_email = gr.Textbox(
label="E-Mail(Will not be displayed)", placeholder="Required field"
)
# with gr.Row():
# gr.Markdown("The following is optional and will be synced to [GitHub] (https://t2v-compbench.github.io/)", elem_classes="markdown-text")
with gr.Row():
model_publish = gr.Textbox(label="Time of Publish", placeholder="1970-01-01")
model_resolution = gr.Textbox(label="Resolution", placeholder="width x height")
model_frame = gr.Textbox(label="Frame Count", placeholder="int")
model_fps = gr.Textbox(label="FPS", placeholder="int")
model_video_length = gr.Textbox(label="Video Duration(s)", placeholder="float(2.0)")
model_checkpoint = gr.Textbox(label="Model Checkpoint", placeholder="optional")
model_commit_id = gr.Textbox(label="Github commit id", placeholder='optional')
model_video_format = gr.Textbox(label="Video Format", placeholder='mp4/gif')
with gr.Column():
input_file = gr.components.File(label = "Click to Upload a ZIP File", file_count="single", type='binary')
submit_button = gr.Button("Submit Eval!")
submit_succ_button = gr.Markdown("Submit Success! Please press refresh and return to LeaderBoard!", visible=False)
fail_textbox = gr.Markdown('โ๏ธPlease ensure that the `Model Name`, `Project Page`, and `Email` are filled in correctly.',visible=False)
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs = [
input_file,
model_name_textbox,
revision_name_textbox,
access_type,
model_link,
team_name,
contact_email,
model_publish,
model_resolution,
model_frame,
model_fps,
model_video_length,
model_checkpoint,
model_commit_id,
model_video_format
],
outputs=[submit_button, submit_succ_button, fail_textbox]
)
def refresh_data():
value1 = get_baseline_df()
return value1
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(category_checkbox_change, inputs=[checkbox_group, compbench_team_filter], outputs=data_component)
block.launch()
|