|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import numpy as np |
|
import torch |
|
from random import randint |
|
from utils.loss_utils import l1_loss, ssim |
|
from gaussian_renderer import render, network_gui, render_confidence |
|
import sys |
|
from scene import Scene, GaussianModel |
|
from utils.general_utils import safe_state |
|
from tqdm import tqdm |
|
from utils.image_utils import psnr |
|
from argparse import ArgumentParser, Namespace |
|
from arguments import ModelParams, PipelineParams, OptimizationParams |
|
from scene.cameras import Camera |
|
from utils.pose_utils import get_camera_from_tensor |
|
import torchvision |
|
import dearpygui.dearpygui as dpg |
|
from scipy.spatial.transform import Rotation |
|
import random |
|
|
|
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, args): |
|
|
|
first_iter = 0 |
|
gaussians = GaussianModel(dataset.sh_degree) |
|
scene = Scene(dataset, gaussians, opt=args, shuffle=False) |
|
gaussians.training_setup(opt) |
|
if checkpoint: |
|
(model_params, first_iter) = torch.load(checkpoint) |
|
gaussians.restore(model_params, opt) |
|
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0] |
|
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") |
|
|
|
iter_start = torch.cuda.Event(enable_timing = True) |
|
iter_end = torch.cuda.Event(enable_timing = True) |
|
|
|
viewpoint_stack = None |
|
ema_loss_for_log = 0.0 |
|
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress") |
|
first_iter += 1 |
|
|
|
|
|
for iteration in range(first_iter, opt.iterations + 1): |
|
|
|
iter_start.record() |
|
|
|
gaussians.update_learning_rate(iteration) |
|
|
|
if args.optim_pose==False: |
|
gaussians.get_P().requires_grad_(False) |
|
|
|
|
|
if iteration % 3000 == 0: |
|
gaussians.oneupSHdegree() |
|
|
|
|
|
if not viewpoint_stack: |
|
viewpoint_stack = scene.getTrainCameras().copy() |
|
|
|
|
|
if (iteration - 1) == debug_from: |
|
pipe.debug = True |
|
bg = torch.rand((3), device="cuda") if opt.random_background else background |
|
|
|
|
|
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1)) |
|
pose = gaussians.get_RT(viewpoint_cam.uid) |
|
|
|
|
|
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, camera_pose=pose) |
|
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"] |
|
|
|
|
|
|
|
gt_image = viewpoint_cam.original_image.cuda() |
|
|
|
static = gaussians._conf_static[viewpoint_cam.uid] |
|
|
|
image = image * static |
|
gt_image = gt_image * static |
|
Ll1 = l1_loss(image, gt_image, reduce=False) |
|
Lssim = ssim(image, gt_image, size_average=False) |
|
|
|
psnr_frame = psnr(image, gt_image).mean() |
|
|
|
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - Lssim) |
|
loss = (loss).mean() |
|
|
|
|
|
loss.backward(retain_graph=True) |
|
|
|
with torch.no_grad(): |
|
gaussians.optimizer.step() |
|
gaussians.optimizer.zero_grad(set_to_none = True) |
|
if psnr_frame > args.psnr_threshold: |
|
gaussians.optimizer_cam.step() |
|
gaussians.optimizer_cam.zero_grad(set_to_none = True) |
|
|
|
if not viewpoint_stack: |
|
|
|
viewpoint_stack = scene.getTestCameras().copy() |
|
|
|
if (iteration - 1) == debug_from: |
|
pipe.debug = True |
|
bg = torch.rand((3), device="cuda") if opt.random_background else background |
|
|
|
while len(viewpoint_stack) > 0: |
|
|
|
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1)) |
|
|
|
|
|
pose = gaussians.get_RT_test(viewpoint_cam.uid) |
|
|
|
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, camera_pose=pose) |
|
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"] |
|
|
|
|
|
gt_image = viewpoint_cam.original_image.cuda() |
|
gt_static_mask = 1 - viewpoint_cam.gt_dynamic_mask.to("cuda") |
|
image = image * gt_static_mask |
|
gt_image = gt_image * gt_static_mask |
|
|
|
Ll1 = l1_loss(image, gt_image, reduce=False) |
|
Lssim = ssim(image, gt_image, size_average=False) |
|
|
|
psnr_frame = psnr(image, gt_image).mean() |
|
|
|
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - Lssim) |
|
loss = (loss).mean() |
|
|
|
|
|
loss.backward(retain_graph=True) |
|
|
|
with torch.no_grad(): |
|
|
|
gaussians.optimizer.zero_grad(set_to_none = True) |
|
if psnr_frame > args.psnr_threshold: |
|
gaussians.optimizer_cam.step() |
|
gaussians.optimizer_cam.zero_grad(set_to_none = True) |
|
|
|
iter_end.record() |
|
|
|
with torch.no_grad(): |
|
|
|
|
|
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log |
|
if iteration % 10 == 0: |
|
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"}) |
|
progress_bar.update(10) |
|
if iteration == opt.iterations: |
|
progress_bar.close() |
|
|
|
|
|
training_report(iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background)) |
|
if (iteration in saving_iterations): |
|
print("\n[ITER {}] Saving Gaussians".format(iteration)) |
|
scene.save(iteration) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (iteration in checkpoint_iterations): |
|
print("\n[ITER {}] Saving Checkpoint".format(iteration)) |
|
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth") |
|
|
|
|
|
def save_pose(path, quat_pose, train_cams, llffhold=2): |
|
output_poses=[] |
|
index_colmap = [cam.colmap_id for cam in train_cams] |
|
for quat_t in quat_pose: |
|
w2c = get_camera_from_tensor(quat_t) |
|
output_poses.append(w2c) |
|
|
|
return index_colmap, output_poses |
|
|
|
def convert_colmap_to_quat(colmap_poses): |
|
quat_pose = [] |
|
for pose in colmap_poses: |
|
rotation = Rotation.from_matrix(pose[:3, :3]) |
|
quat = rotation.as_quat() |
|
translation = pose[:3, 3] |
|
quat_pose.append(np.concatenate([quat, translation])) |
|
return quat_pose |
|
|
|
def c2w_to_tumpose(c2w): |
|
""" |
|
Convert a camera-to-world matrix to a tuple of translation and rotation |
|
|
|
input: c2w: 4x4 matrix |
|
output: tuple of translation and rotation (x y z qw qx qy qz) |
|
""" |
|
|
|
c2w = c2w |
|
c2w = np.linalg.inv(c2w) |
|
xyz = c2w[:3, -1] |
|
rot = Rotation.from_matrix(c2w[:3, :3]) |
|
qx, qy, qz, qw = rot.as_quat() |
|
tum_pose = np.concatenate([xyz, [qw, qx, qy, qz]]) |
|
return tum_pose |
|
|
|
def tumpose_to_c2w(tum_pose): |
|
""" |
|
Convert a tuple of translation and rotation to a camera-to-world matrix |
|
|
|
input: tum_pose: tuple of translation and rotation (x y z qw qx qy qz) |
|
output: c2w: 4x4 matrix |
|
""" |
|
xyz = tum_pose[:3] |
|
qw, qx, qy, qz = tum_pose[3:] |
|
rot = Rotation.from_quat([qx, qy, qz, qw]) |
|
c2w = np.eye(4) |
|
c2w[:3, :3] = rot.as_matrix() |
|
c2w[:3, -1] = xyz |
|
c2w = np.linalg.inv(c2w) |
|
return c2w |
|
|
|
def training_report(iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs): |
|
|
|
|
|
if iteration in testing_iterations: |
|
|
|
torch.cuda.empty_cache() |
|
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},) |
|
|
|
for config in validation_configs: |
|
if config['cameras'] and len(config['cameras']) > 0: |
|
l1_test = 0.0 |
|
psnr_test = 0.0 |
|
lens = 0 |
|
for idx, viewpoint in enumerate(config['cameras']): |
|
if config['name']=="train": |
|
pose = scene.gaussians.get_RT(viewpoint.uid) |
|
else: |
|
pose = scene.gaussians.get_RT_test(viewpoint.uid) |
|
image = torch.clamp(renderFunc(viewpoint, scene.gaussians, *renderArgs, camera_pose=pose)["render"], 0.0, 1.0) |
|
torchvision.utils.save_image( |
|
image, os.path.join(scene.model_path, "{0:05d}".format(viewpoint.colmap_id) + ".png") |
|
) |
|
gt_image = torch.clamp(viewpoint.original_image.to("cuda"), 0.0, 1.0) |
|
|
|
if hasattr(viewpoint, 'gt_dynamic_mask'): |
|
gt_static_mask = 1 - viewpoint.gt_dynamic_mask.to("cuda") |
|
|
|
np.save(os.path.join(scene.model_path, f"{viewpoint.colmap_id}_image.npy"), image.cpu().numpy()) |
|
np.save(os.path.join(scene.model_path, f"{viewpoint.colmap_id}_gt_image.npy"), gt_image.cpu().numpy()) |
|
np.save(os.path.join(scene.model_path, f"{viewpoint.colmap_id}_gt_static_mask.npy"), gt_static_mask.cpu().numpy()) |
|
|
|
image = image * gt_static_mask |
|
gt_image = gt_image * gt_static_mask |
|
l1_test += l1_loss(image, gt_image).mean().double() |
|
psnr_test += psnr(image, gt_image).mean().double() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lens += 1 |
|
|
|
|
|
|
|
|
|
psnr_test /= lens |
|
l1_test /= lens |
|
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test)) |
|
with open(os.path.join(scene.model_path, f"{config['name']}_log.txt"), 'a') as log_file: |
|
log_file.write(f"[ITER {iteration}] Evaluating {config['name']}: L1 {l1_test} PSNR {psnr_test}\n") |
|
|
|
torch.cuda.empty_cache() |
|
|
|
if __name__ == "__main__": |
|
|
|
parser = ArgumentParser(description="Training script parameters") |
|
lp = ModelParams(parser) |
|
op = OptimizationParams(parser) |
|
pp = PipelineParams(parser) |
|
parser.add_argument('--ip', type=str, default="127.0.0.1") |
|
parser.add_argument('--port', type=int, default=6009) |
|
parser.add_argument('--debug_from', type=int, default=-1) |
|
parser.add_argument('--detect_anomaly', action='store_true', default=False) |
|
parser.add_argument("--test_iterations", nargs="+", type=int, default=[500, 800, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7_000, 30_000]) |
|
parser.add_argument("--save_iterations", nargs="+", type=int, default=[]) |
|
parser.add_argument("--quiet", action="store_true") |
|
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[]) |
|
parser.add_argument("--start_checkpoint", type=str, default = None) |
|
parser.add_argument("--scene", type=str, default=None) |
|
parser.add_argument("--n_views", type=int, default=None) |
|
parser.add_argument("--get_video", action="store_true") |
|
parser.add_argument("--optim_pose", action="store_true") |
|
parser.add_argument("--gui", action="store_true") |
|
parser.add_argument("--eval_pose", action="store_true") |
|
parser.add_argument('--pose_eval_interval', type=int, default=100) |
|
parser.add_argument('--psnr_threshold', type=float, default=26) |
|
parser.add_argument('--gt_dynamic_mask', type=str, default='data/sintel/training/dynamic_label_perfect') |
|
parser.add_argument('--dataset', type=str, default='sintel') |
|
|
|
|
|
args = parser.parse_args(sys.argv[1:]) |
|
args.save_iterations.append(args.iterations) |
|
|
|
lp.eval = True |
|
args.eval = True |
|
|
|
os.makedirs(args.model_path, exist_ok=True) |
|
|
|
print("Optimizing " + args.model_path) |
|
|
|
torch.autograd.set_detect_anomaly(args.detect_anomaly) |
|
|
|
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args) |
|
|
|
|
|
print("\nTraining complete.") |
|
|