File size: 6,180 Bytes
4f6b78d
 
 
 
 
 
 
 
 
0bc2276
4f6b78d
 
60fd7ba
 
 
 
 
 
4f6b78d
 
60fd7ba
 
 
 
4f6b78d
 
 
 
 
 
 
b301b74
 
 
 
60fd7ba
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60fd7ba
59a7cb5
 
 
 
 
 
 
 
 
6123d4a
 
 
60fd7ba
 
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5aae13
 
4f6b78d
 
 
 
 
 
b5aae13
4f6b78d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
639adcd
4f6b78d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# build upon InstantSplat https://huggingface.co/spaces/kairunwen/InstantSplat/blob/main/app.py
import os, subprocess, shlex, sys, gc
import numpy as np
import shutil
import argparse
import gradio as gr
import uuid
import glob
import re
import torch
import spaces

subprocess.run(shlex.split("pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl"))
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
os.sys.path.append(os.path.abspath(os.path.join(BASE_DIR, "dynamic_predictor")))
os.sys.path.append(os.path.abspath(os.path.join(BASE_DIR)))
GRADIO_CACHE_FOLDER = './gradio_cache_folder'

from dynamic_predictor.launch import main as dynamic_predictor_main
from utils_das3r.rearrange import main as rearrange_main
from train_gui import main as train_main
from render import main as render_main


def natural_sort(l): 
    convert = lambda text: int(text) if text.isdigit() else text.lower()
    alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key.split('/')[-1])]
    return sorted(l, key=alphanum_key)

def cmd(command):
    print(command)
    os.system(command)

@spaces.GPU(duration=150)
def process(inputfiles, input_path='demo'):
    if inputfiles:
        frames = natural_sort(inputfiles)
    else:
        frames = natural_sort(glob.glob('./assets/example/' + input_path + '/*'))
    if len(frames) > 20:
        stride = int(np.ceil(len(frames) / 20))
        frames = frames[::stride]
    
    # Create a temporary directory to store the selected frames
    temp_dir = os.path.join(GRADIO_CACHE_FOLDER, str(uuid.uuid4()))
    os.makedirs(temp_dir, exist_ok=True)
    
    # Copy the selected frames to the temporary directory
    for i, frame in enumerate(frames):
        shutil.copy(frame, f"{temp_dir}/{i:04d}.{frame.split('.')[-1]}")

    imgs_path = temp_dir
    output_path = f'./results/{input_path}/output'
    rearranged_path = f'{output_path}_rearranged'
    # cmd(f"python dynamic_predictor/launch.py --mode=eval_pose_custom \
    #     --pretrained=Kai422kx/das3r \
    #     --dir_path={imgs_path} \
    #     --output_dir={output_path} \
    #     --use_pred_mask ")
    dynamic_predictor_main(pretrained='Kai422kx/das3r', dir_path=imgs_path, output_dir=output_path, use_pred_mask=True, n_iter=150)
    rearrange_main(output_dir=output_path, rearranged_path = rearranged_path)
    train_main(s = rearranged_path, m = rearranged_path, iter = 2000)
    render_main(s = rearranged_path, m = rearranged_path, iter = 2000, get_video = True)



    output_video_path = f"{rearranged_path}/rendered.mp4"
    output_ply_path = f"{rearranged_path}/point_cloud/iteration_2000/point_cloud.ply"
    return  output_video_path, output_ply_path, output_ply_path



_TITLE = '''DAS3R'''
_DESCRIPTION = '''
<div style="display: flex; justify-content: center; align-items: center;">
    <div style="width: 100%; text-align: center; font-size: 30px;">
        <strong>DAS3R: Dynamics-Aware Gaussian Splatting for Static Scene Reconstruction</strong>
    </div>
</div> 
<p></p>


<div align="center">
    <a style="display:inline-block" href="https://arxiv.org/abs/2412.19584"><img src="https://img.shields.io/badge/ArXiv-2412.19584-b31b1b.svg?logo=arXiv" alt='arxiv'></a>
    <a style="display:inline-block" href="https://kai422.github.io/DAS3R/"><img src='https://img.shields.io/badge/Project-Website-blue.svg'></a>
    <a style="display:inline-block" href="https://github.com/kai422/DAS3R"><img src='https://img.shields.io/badge/GitHub-%23121011.svg?logo=github&logoColor=white'></a>
</div>
<p></p>


* Official demo of [DAS3R: Dynamics-Aware Gaussian Splatting for Static Scene Reconstruction](https://kai422.github.io/DAS3R/).
* You can explore the sample results by clicking the sequence names at the bottom of the page.
* Due to GPU memory and time limitations, processing is restricted to 20 frames and 2000 GS training iterations. Uniform sampling is applied if input frames exceed 20. 
* This Gradio demo is built upon InstantSplat, which can be found at [https://huggingface.co/spaces/kairunwen/InstantSplat](https://huggingface.co/spaces/kairunwen/InstantSplat).

'''

block = gr.Blocks().queue()
with block:
    with gr.Row():
        with gr.Column(scale=1):
            # gr.Markdown('# ' + _TITLE)
            gr.Markdown(_DESCRIPTION)
    
    with gr.Row(variant='panel'):
        with gr.Tab("Input"):
            inputfiles = gr.File(file_count="multiple", label="images")
            input_path = gr.Textbox(visible=False, label="example_path")
            button_gen = gr.Button("RUN")

    with gr.Row(variant='panel'):
        with gr.Tab("Output"):
            with gr.Column(scale=2):
                with gr.Group():
                    output_model = gr.Model3D(
                        label="3D Dense Model under Gaussian Splats Formats, need more time to visualize",
                        interactive=False,
                        camera_position=[0.5, 0.5, 1],  # 稍微偏移一点,以便更好地查看模型
                    )
                    gr.Markdown(
                        """
                        <div class="model-description">
                           &nbsp;&nbsp;Use the left mouse button to rotate, the scroll wheel to zoom, and the right mouse button to move.
                        </div>
                        """
                    )    
                output_file = gr.File(label="ply")
            with gr.Column(scale=1):
                output_video = gr.Video(label="video")
                
    button_gen.click(process, inputs=[inputfiles], outputs=[output_video, output_file, output_model])
    
    gr.Examples(
        examples=[
            "davis-dog",
            # "sintel-market_2",
        ],
        inputs=[input_path],
        outputs=[output_video, output_file, output_model],
        fn=lambda x: process(inputfiles=None, input_path=x),
        cache_examples=True,
        label='Examples'
    )
block.launch(server_name="0.0.0.0", share=False)