Spaces:
Sleeping
Sleeping
### Stolen from https://huggingface.co/spaces/pierreguillou/tatr-demo/blob/main/app.py | |
import matplotlib.pyplot as plt | |
import matplotlib.patches as patches | |
from matplotlib.patches import Patch | |
import io | |
from PIL import Image, ImageDraw | |
import numpy as np | |
import csv | |
import pandas as pd | |
from torchvision import transforms | |
from transformers import AutoModelForObjectDetection | |
import torch | |
import easyocr | |
import gradio as gr | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
class MaxResize(object): | |
def __init__(self, max_size=800): | |
self.max_size = max_size | |
def __call__(self, image): | |
width, height = image.size | |
current_max_size = max(width, height) | |
scale = self.max_size / current_max_size | |
resized_image = image.resize((int(round(scale*width)), int(round(scale*height)))) | |
return resized_image | |
detection_transform = transforms.Compose([ | |
MaxResize(800), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
structure_transform = transforms.Compose([ | |
MaxResize(1000), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
# load table detection model | |
# processor = TableTransformerImageProcessor(max_size=800) | |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm").to(device) | |
# load table structure recognition model | |
# structure_processor = TableTransformerImageProcessor(max_size=1000) | |
structure_model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all").to(device) | |
# load EasyOCR reader | |
reader = easyocr.Reader(['en']) | |
# for output bounding box post-processing | |
def box_cxcywh_to_xyxy(x): | |
x_c, y_c, w, h = x.unbind(-1) | |
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] | |
return torch.stack(b, dim=1) | |
def rescale_bboxes(out_bbox, size): | |
width, height = size | |
boxes = box_cxcywh_to_xyxy(out_bbox) | |
boxes = boxes * torch.tensor([width, height, width, height], dtype=torch.float32) | |
return boxes | |
def outputs_to_objects(outputs, img_size, id2label): | |
m = outputs.logits.softmax(-1).max(-1) | |
pred_labels = list(m.indices.detach().cpu().numpy())[0] | |
pred_scores = list(m.values.detach().cpu().numpy())[0] | |
pred_bboxes = outputs['pred_boxes'].detach().cpu()[0] | |
pred_bboxes = [elem.tolist() for elem in rescale_bboxes(pred_bboxes, img_size)] | |
objects = [] | |
for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes): | |
class_label = id2label[int(label)] | |
if not class_label == 'no object': | |
objects.append({'label': class_label, 'score': float(score), | |
'bbox': [float(elem) for elem in bbox]}) | |
return objects | |
def fig2img(fig): | |
"""Convert a Matplotlib figure to a PIL Image and return it""" | |
buf = io.BytesIO() | |
fig.savefig(buf) | |
buf.seek(0) | |
image = Image.open(buf) | |
return image | |
def visualize_detected_tables(img, det_tables): | |
plt.imshow(img, interpolation="lanczos") | |
fig = plt.gcf() | |
fig.set_size_inches(20, 20) | |
ax = plt.gca() | |
for det_table in det_tables: | |
bbox = det_table['bbox'] | |
if det_table['label'] == 'table': | |
facecolor = (1, 0, 0.45) | |
edgecolor = (1, 0, 0.45) | |
alpha = 0.3 | |
linewidth = 2 | |
hatch='//////' | |
elif det_table['label'] == 'table rotated': | |
facecolor = (0.95, 0.6, 0.1) | |
edgecolor = (0.95, 0.6, 0.1) | |
alpha = 0.3 | |
linewidth = 2 | |
hatch='//////' | |
else: | |
continue | |
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth, | |
edgecolor='none',facecolor=facecolor, alpha=0.1) | |
ax.add_patch(rect) | |
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=linewidth, | |
edgecolor=edgecolor,facecolor='none',linestyle='-', alpha=alpha) | |
ax.add_patch(rect) | |
rect = patches.Rectangle(bbox[:2], bbox[2]-bbox[0], bbox[3]-bbox[1], linewidth=0, | |
edgecolor=edgecolor,facecolor='none',linestyle='-', hatch=hatch, alpha=0.2) | |
ax.add_patch(rect) | |
plt.xticks([], []) | |
plt.yticks([], []) | |
legend_elements = [Patch(facecolor=(1, 0, 0.45), edgecolor=(1, 0, 0.45), | |
label='Table', hatch='//////', alpha=0.3), | |
Patch(facecolor=(0.95, 0.6, 0.1), edgecolor=(0.95, 0.6, 0.1), | |
label='Table (rotated)', hatch='//////', alpha=0.3)] | |
plt.legend(handles=legend_elements, bbox_to_anchor=(0.5, -0.02), loc='upper center', borderaxespad=0, | |
fontsize=10, ncol=2) | |
plt.gcf().set_size_inches(10, 10) | |
plt.axis('off') | |
return fig | |
def detect_and_crop_table(image): | |
# prepare image for the model | |
# pixel_values = processor(image, return_tensors="pt").pixel_values | |
pixel_values = detection_transform(image).unsqueeze(0).to(device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = model(pixel_values) | |
# postprocess to get detected tables | |
id2label = model.config.id2label | |
id2label[len(model.config.id2label)] = "no object" | |
detected_tables = outputs_to_objects(outputs, image.size, id2label) | |
# visualize | |
# fig = visualize_detected_tables(image, detected_tables) | |
# image = fig2img(fig) | |
# crop first detected table out of image | |
cropped_table = image.crop(detected_tables[0]["bbox"]) | |
return cropped_table | |
def recognize_table(image): | |
# prepare image for the model | |
# pixel_values = structure_processor(images=image, return_tensors="pt").pixel_values | |
pixel_values = structure_transform(image).unsqueeze(0).to(device) | |
# forward pass | |
with torch.no_grad(): | |
outputs = structure_model(pixel_values) | |
# postprocess to get individual elements | |
id2label = structure_model.config.id2label | |
id2label[len(structure_model.config.id2label)] = "no object" | |
cells = outputs_to_objects(outputs, image.size, id2label) | |
# visualize cells on cropped table | |
draw = ImageDraw.Draw(image) | |
for cell in cells: | |
draw.rectangle(cell["bbox"], outline="red") | |
return image, cells | |
def get_cell_coordinates_by_row(table_data): | |
# Extract rows and columns | |
rows = [entry for entry in table_data if entry['label'] == 'table row'] | |
columns = [entry for entry in table_data if entry['label'] == 'table column'] | |
# Sort rows and columns by their Y and X coordinates, respectively | |
rows.sort(key=lambda x: x['bbox'][1]) | |
columns.sort(key=lambda x: x['bbox'][0]) | |
# Function to find cell coordinates | |
def find_cell_coordinates(row, column): | |
cell_bbox = [column['bbox'][0], row['bbox'][1], column['bbox'][2], row['bbox'][3]] | |
return cell_bbox | |
# Generate cell coordinates and count cells in each row | |
cell_coordinates = [] | |
for row in rows: | |
row_cells = [] | |
for column in columns: | |
cell_bbox = find_cell_coordinates(row, column) | |
row_cells.append({'column': column['bbox'], 'cell': cell_bbox}) | |
# Sort cells in the row by X coordinate | |
row_cells.sort(key=lambda x: x['column'][0]) | |
# Append row information to cell_coordinates | |
cell_coordinates.append({'row': row['bbox'], 'cells': row_cells, 'cell_count': len(row_cells)}) | |
# Sort rows from top to bottom | |
cell_coordinates.sort(key=lambda x: x['row'][1]) | |
return cell_coordinates | |
def apply_ocr(cell_coordinates, cropped_table): | |
# let's OCR row by row | |
data = dict() | |
max_num_columns = 0 | |
for idx, row in enumerate(cell_coordinates): | |
row_text = [] | |
for cell in row["cells"]: | |
# crop cell out of image | |
cell_image = np.array(cropped_table.crop(cell["cell"])) | |
# apply OCR | |
result = reader.readtext(np.array(cell_image)) | |
if len(result) > 0: | |
text = " ".join([x[1] for x in result]) | |
row_text.append(text) | |
if len(row_text) > max_num_columns: | |
max_num_columns = len(row_text) | |
data[str(idx)] = row_text | |
# pad rows which don't have max_num_columns elements | |
# to make sure all rows have the same number of columns | |
for idx, row_data in data.copy().items(): | |
if len(row_data) != max_num_columns: | |
row_data = row_data + ["" for _ in range(max_num_columns - len(row_data))] | |
data[str(idx)] = row_data | |
# # write to csv | |
# with open('output.csv','w') as result_file: | |
# wr = csv.writer(result_file, dialect='excel') | |
# for row, row_text in data.items(): | |
# wr.writerow(row_text) | |
# # return as Pandas dataframe | |
# df = pd.read_csv('output.csv') | |
return data | |
def process_pdf(image): | |
cropped_table = detect_and_crop_table(image) | |
image, cells = recognize_table(cropped_table) | |
cell_coordinates = get_cell_coordinates_by_row(cells) | |
# df, data = apply_ocr(cell_coordinates, image) | |
# return image, df, data | |
data = apply_ocr(cell_coordinates, image) | |
return image, data | |
title = "Demo: table detection & recognition with Table Transformer (TATR)." | |
description = """Demo for table extraction with the Table Transformer. First, table detection is performed on the input image using https://huggingface.co/microsoft/table-transformer-detection, | |
after which the detected table is extracted and https://huggingface.co/microsoft/table-transformer-structure-recognition-v1.1-all is leveraged to recognize the individual rows, columns and cells. OCR is then performed per cell, row by row.""" | |
app = gr.Interface(fn=process_pdf, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Image(type="pil", label="Detected table"), gr.JSON(label="JSON")]) | |
app.queue() | |
app.launch(debug=True) |