Upload dc.py
Browse files
dc.py
CHANGED
@@ -552,7 +552,7 @@ def dynamic_gpu_duration(func, duration, *args):
|
|
552 |
@torch.inference_mode()
|
553 |
@spaces.GPU(duration=duration)
|
554 |
def wrapped_func():
|
555 |
-
|
556 |
|
557 |
return wrapped_func()
|
558 |
|
@@ -578,8 +578,8 @@ def sd_gen_generate_pipeline(*args):
|
|
578 |
if load_lora_cpu:
|
579 |
msg_load_lora = "Updating LoRAs in CPU (Slow but saves GPU usage)..."
|
580 |
|
581 |
-
|
582 |
-
|
583 |
|
584 |
# Load lora in CPU
|
585 |
if load_lora_cpu:
|
@@ -609,7 +609,7 @@ def sd_gen_generate_pipeline(*args):
|
|
609 |
if verbose_arg:
|
610 |
gr.Info(msg_request)
|
611 |
print(msg_request)
|
612 |
-
|
613 |
|
614 |
start_time = time.time()
|
615 |
|
@@ -686,7 +686,6 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
686 |
gpu_duration = 59
|
687 |
|
688 |
images: list[tuple[PIL.Image.Image, str | None]] = []
|
689 |
-
info_state = info_images = ""
|
690 |
progress(0, desc="Preparing...")
|
691 |
|
692 |
if randomize_seed:
|
@@ -710,8 +709,8 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
710 |
progress(1, desc="Preparation completed. Starting inference...")
|
711 |
|
712 |
progress(0, desc="Loading model...")
|
713 |
-
for
|
714 |
-
|
715 |
progress(1, desc="Model loaded.")
|
716 |
progress(0, desc="Starting Inference...")
|
717 |
images = None
|
@@ -727,6 +726,7 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
727 |
True, None, None, "plus_face", "original", 0.7, None, None, "base", "style", 0.7, 0.0,
|
728 |
load_lora_cpu, verbose_info, gpu_duration
|
729 |
):
|
|
|
730 |
images = stream_images
|
731 |
progress(1, desc="Inference completed.")
|
732 |
output_image = images[0][0] if images else None
|
|
|
552 |
@torch.inference_mode()
|
553 |
@spaces.GPU(duration=duration)
|
554 |
def wrapped_func():
|
555 |
+
yield from func(*args)
|
556 |
|
557 |
return wrapped_func()
|
558 |
|
|
|
578 |
if load_lora_cpu:
|
579 |
msg_load_lora = "Updating LoRAs in CPU (Slow but saves GPU usage)..."
|
580 |
|
581 |
+
if lora_list != sd_gen.model.lora_memory and lora_list != [None] * 5:
|
582 |
+
yield msg_load_lora, gr.update(), gr.update()
|
583 |
|
584 |
# Load lora in CPU
|
585 |
if load_lora_cpu:
|
|
|
609 |
if verbose_arg:
|
610 |
gr.Info(msg_request)
|
611 |
print(msg_request)
|
612 |
+
yield msg_request.replace("\n", "<br>"), gr.update(), gr.update()
|
613 |
|
614 |
start_time = time.time()
|
615 |
|
|
|
686 |
gpu_duration = 59
|
687 |
|
688 |
images: list[tuple[PIL.Image.Image, str | None]] = []
|
|
|
689 |
progress(0, desc="Preparing...")
|
690 |
|
691 |
if randomize_seed:
|
|
|
709 |
progress(1, desc="Preparation completed. Starting inference...")
|
710 |
|
711 |
progress(0, desc="Loading model...")
|
712 |
+
for m in sd_gen.load_new_model(model_name, vae, TASK_MODEL_LIST[0]):
|
713 |
+
progress(0.5, desc=m)
|
714 |
progress(1, desc="Model loaded.")
|
715 |
progress(0, desc="Starting Inference...")
|
716 |
images = None
|
|
|
726 |
True, None, None, "plus_face", "original", 0.7, None, None, "base", "style", 0.7, 0.0,
|
727 |
load_lora_cpu, verbose_info, gpu_duration
|
728 |
):
|
729 |
+
progress(0.5, desc=info_state)
|
730 |
images = stream_images
|
731 |
progress(1, desc="Inference completed.")
|
732 |
output_image = images[0][0] if images else None
|