Spaces:
Running
on
Zero
Running
on
Zero
Upload 12 files
Browse files- 9em124t2-499968/clip_model.pt +3 -0
- 9em124t2-499968/config.yaml +39 -0
- 9em124t2-499968/image_adapter.pt +3 -0
- 9em124t2-499968/text_model/README.md +202 -0
- 9em124t2-499968/text_model/adapter_config.json +29 -0
- 9em124t2-499968/text_model/adapter_model.safetensors +3 -0
- README.md +2 -2
- app.py +26 -8
- joycaption.py +207 -37
- requirements.txt +3 -1
9em124t2-499968/clip_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d7b0548d12fa649370896982c2af9d03d43285b782bd47639c96e6e0b29473c
|
3 |
+
size 1713067838
|
9em124t2-499968/config.yaml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_project: joy-caption-1
|
2 |
+
device_batch_size: 2
|
3 |
+
batch_size: 256
|
4 |
+
learning_rate: 0.0002
|
5 |
+
warmup_samples: 18000
|
6 |
+
max_samples: 500000
|
7 |
+
save_every: 50000
|
8 |
+
test_every: 50000
|
9 |
+
use_amp: true
|
10 |
+
grad_scaler: true
|
11 |
+
lr_scheduler_type: cosine
|
12 |
+
min_lr_ratio: 0.0
|
13 |
+
allow_tf32: true
|
14 |
+
seed: 69
|
15 |
+
num_workers: 8
|
16 |
+
optimizer_type: adamw
|
17 |
+
adam_beta1: 0.9
|
18 |
+
adam_beta2: 0.999
|
19 |
+
adam_eps: 1.0e-08
|
20 |
+
adam_weight_decay: 0.0
|
21 |
+
clip_grad_norm: 1.0
|
22 |
+
dataset: fancyfeast/joy-captioning-20240917a
|
23 |
+
clip_model: google/siglip-so400m-patch14-384
|
24 |
+
text_model: meta-llama/Meta-Llama-3.1-8B
|
25 |
+
resume: null
|
26 |
+
gradient_checkpointing: false
|
27 |
+
test_size: 2048
|
28 |
+
grad_scaler_init: 65536.0
|
29 |
+
max_caption_length: 257
|
30 |
+
num_image_tokens: 32
|
31 |
+
adapter_type: mlp
|
32 |
+
text_model_dtype: bfloat16
|
33 |
+
pre_test: false
|
34 |
+
train_image_model: true
|
35 |
+
image_model_lr: null
|
36 |
+
train_lora: true
|
37 |
+
lora_r: 64
|
38 |
+
lora_alpha: 16
|
39 |
+
lora_dropout: 0.1
|
9em124t2-499968/image_adapter.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e53c3bf8df745a3c19ae3c70dbf9bf23cfdc8f3fdb937000a4eafd2a36914661
|
3 |
+
size 86067714
|
9em124t2-499968/text_model/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Meta-Llama-3.1-8B
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.12.0
|
9em124t2-499968/text_model/adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "meta-llama/Meta-Llama-3.1-8B",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 64,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"q_proj",
|
24 |
+
"v_proj"
|
25 |
+
],
|
26 |
+
"task_type": "CAUSAL_LM",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
+
}
|
9em124t2-499968/text_model/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b48221de174ab0db7b46b4833118c5c0a4c2bf0b51b77b4cc4ab04651bd06cca
|
3 |
+
size 109069176
|
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title: Joy Caption
|
3 |
emoji: 💬
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
1 |
---
|
2 |
+
title: Joy Caption Alpha One Mod
|
3 |
emoji: 💬
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.44.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app.py
CHANGED
@@ -2,20 +2,38 @@ import spaces
|
|
2 |
import gradio as gr
|
3 |
from joycaption import stream_chat_mod, get_text_model, change_text_model, get_repo_gguf
|
4 |
|
5 |
-
JC_TITLE_MD = "<h1><center>JoyCaption
|
6 |
-
JC_DESC_MD = """This space is mod of [fancyfeast/joy-caption-
|
7 |
[Wi-zz/joy-caption-pre-alpha](https://huggingface.co/Wi-zz/joy-caption-pre-alpha)"""
|
8 |
|
9 |
css = """
|
10 |
-
.info {text-align:center;
|
11 |
"""
|
12 |
|
13 |
-
with gr.Blocks(delete_cache=(60, 3600)) as demo:
|
14 |
gr.HTML(JC_TITLE_MD)
|
15 |
with gr.Row():
|
16 |
with gr.Column():
|
17 |
with gr.Group():
|
18 |
jc_input_image = gr.Image(type="pil", label="Input Image", sources=["upload", "clipboard"], height=384)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
with gr.Accordion("Advanced", open=False):
|
20 |
with gr.Row():
|
21 |
jc_text_model = gr.Dropdown(label="LLM Model", info="You can enter a huggingface model repo_id to want to use.",
|
@@ -28,8 +46,8 @@ with gr.Blocks(delete_cache=(60, 3600)) as demo:
|
|
28 |
jc_use_inference_client = gr.Checkbox(label="Use Inference Client", value=False, visible=False)
|
29 |
with gr.Row():
|
30 |
jc_tokens = gr.Slider(minimum=1, maximum=4096, value=300, step=1, label="Max tokens")
|
31 |
-
jc_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.
|
32 |
-
|
33 |
jc_run_button = gr.Button("Caption", variant="primary")
|
34 |
|
35 |
with gr.Column():
|
@@ -38,11 +56,11 @@ with gr.Blocks(delete_cache=(60, 3600)) as demo:
|
|
38 |
gr.LoginButton()
|
39 |
gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)")
|
40 |
|
41 |
-
jc_run_button.click(fn=stream_chat_mod, inputs=[jc_input_image, jc_tokens,
|
42 |
jc_text_model_button.click(change_text_model, [jc_text_model, jc_use_inference_client, jc_gguf, jc_nf4], [jc_text_model], show_api=False)
|
43 |
#jc_text_model.change(get_repo_gguf, [jc_text_model], [jc_gguf], show_api=False)
|
44 |
jc_use_inference_client.change(change_text_model, [jc_text_model, jc_use_inference_client], [jc_text_model], show_api=False)
|
45 |
|
46 |
if __name__ == "__main__":
|
47 |
-
demo.queue()
|
48 |
demo.launch()
|
|
|
2 |
import gradio as gr
|
3 |
from joycaption import stream_chat_mod, get_text_model, change_text_model, get_repo_gguf
|
4 |
|
5 |
+
JC_TITLE_MD = "<h1><center>JoyCaption Alpha One Mod</center></h1>"
|
6 |
+
JC_DESC_MD = """This space is mod of [fancyfeast/joy-caption-alpha-one](https://huggingface.co/spaces/fancyfeast/joy-caption-alpha-one),
|
7 |
[Wi-zz/joy-caption-pre-alpha](https://huggingface.co/Wi-zz/joy-caption-pre-alpha)"""
|
8 |
|
9 |
css = """
|
10 |
+
.info {text-align:center; !important}
|
11 |
"""
|
12 |
|
13 |
+
with gr.Blocks(fill_width=True, css=css, delete_cache=(60, 3600)) as demo:
|
14 |
gr.HTML(JC_TITLE_MD)
|
15 |
with gr.Row():
|
16 |
with gr.Column():
|
17 |
with gr.Group():
|
18 |
jc_input_image = gr.Image(type="pil", label="Input Image", sources=["upload", "clipboard"], height=384)
|
19 |
+
with gr.Row():
|
20 |
+
jc_caption_type = gr.Dropdown(
|
21 |
+
choices=["descriptive", "training_prompt", "rng-tags"],
|
22 |
+
label="Caption Type",
|
23 |
+
value="descriptive",
|
24 |
+
)
|
25 |
+
jc_caption_tone = gr.Dropdown(
|
26 |
+
choices=["formal", "informal"],
|
27 |
+
label="Caption Tone",
|
28 |
+
value="formal",
|
29 |
+
)
|
30 |
+
jc_caption_length = gr.Dropdown(
|
31 |
+
choices=["any", "very short", "short", "medium-length", "long", "very long"] +
|
32 |
+
[str(i) for i in range(20, 261, 10)],
|
33 |
+
label="Caption Length",
|
34 |
+
value="any",
|
35 |
+
)
|
36 |
+
gr.Markdown("**Note:** Caption tone doesn't affect `rng-tags` and `training_prompt`.", elem_classes="info")
|
37 |
with gr.Accordion("Advanced", open=False):
|
38 |
with gr.Row():
|
39 |
jc_text_model = gr.Dropdown(label="LLM Model", info="You can enter a huggingface model repo_id to want to use.",
|
|
|
46 |
jc_use_inference_client = gr.Checkbox(label="Use Inference Client", value=False, visible=False)
|
47 |
with gr.Row():
|
48 |
jc_tokens = gr.Slider(minimum=1, maximum=4096, value=300, step=1, label="Max tokens")
|
49 |
+
jc_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature")
|
50 |
+
jc_topp = gr.Slider(minimum=0, maximum=2.0, value=0.9, step=0.01, label="Top-P")
|
51 |
jc_run_button = gr.Button("Caption", variant="primary")
|
52 |
|
53 |
with gr.Column():
|
|
|
56 |
gr.LoginButton()
|
57 |
gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)")
|
58 |
|
59 |
+
jc_run_button.click(fn=stream_chat_mod, inputs=[jc_input_image, jc_caption_type, jc_caption_tone, jc_caption_length, jc_tokens, jc_topp, jc_temperature], outputs=[jc_output_caption])
|
60 |
jc_text_model_button.click(change_text_model, [jc_text_model, jc_use_inference_client, jc_gguf, jc_nf4], [jc_text_model], show_api=False)
|
61 |
#jc_text_model.change(get_repo_gguf, [jc_text_model], [jc_gguf], show_api=False)
|
62 |
jc_use_inference_client.change(change_text_model, [jc_text_model, jc_use_inference_client], [jc_text_model], show_api=False)
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
+
#demo.queue()
|
66 |
demo.launch()
|
joycaption.py
CHANGED
@@ -8,7 +8,9 @@ import torch
|
|
8 |
import torch.amp.autocast_mode
|
9 |
from PIL import Image
|
10 |
import os
|
|
|
11 |
import gc
|
|
|
12 |
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
@@ -24,24 +26,89 @@ llm_models = {
|
|
24 |
}
|
25 |
|
26 |
CLIP_PATH = "google/siglip-so400m-patch14-384"
|
27 |
-
VLM_PROMPT = "A descriptive caption for this image:\n"
|
28 |
MODEL_PATH = list(llm_models.keys())[0]
|
29 |
-
CHECKPOINT_PATH = Path("
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
class ImageAdapter(nn.Module):
|
33 |
-
def __init__(self, input_features: int, output_features: int):
|
34 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
35 |
self.linear1 = nn.Linear(input_features, output_features)
|
36 |
self.activation = nn.GELU()
|
37 |
self.linear2 = nn.Linear(output_features, output_features)
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def forward(self, vision_outputs: torch.Tensor):
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
x = self.activation(x)
|
42 |
x = self.linear2(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
return x
|
44 |
|
|
|
|
|
|
|
|
|
45 |
# https://huggingface.co/docs/transformers/v4.44.2/gguf
|
46 |
# https://github.com/city96/ComfyUI-GGUF/issues/7
|
47 |
# https://github.com/THUDM/ChatGLM-6B/issues/18
|
@@ -50,14 +117,18 @@ class ImageAdapter(nn.Module):
|
|
50 |
# https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
|
51 |
# https://huggingface.co/google/flan-ul2/discussions/8
|
52 |
# https://huggingface.co/blog/4bit-transformers-bitsandbytes
|
|
|
|
|
53 |
tokenizer = None
|
54 |
text_model_client = None
|
55 |
text_model = None
|
56 |
image_adapter = None
|
|
|
57 |
def load_text_model(model_name: str=MODEL_PATH, gguf_file: str | None=None, is_nf4: bool=True):
|
58 |
global tokenizer
|
59 |
global text_model
|
60 |
global image_adapter
|
|
|
61 |
global text_model_client #
|
62 |
global use_inference_client #
|
63 |
try:
|
@@ -77,8 +148,14 @@ def load_text_model(model_name: str=MODEL_PATH, gguf_file: str | None=None, is_n
|
|
77 |
if device == "cpu": text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval()
|
78 |
elif is_nf4: text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()
|
79 |
else: text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
print("Loading image adapter")
|
81 |
-
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size).eval().to("cpu")
|
82 |
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
|
83 |
image_adapter.eval().to(device)
|
84 |
except Exception as e:
|
@@ -93,57 +170,95 @@ load_text_model.zerogpu = True
|
|
93 |
# Load CLIP
|
94 |
print("Loading CLIP")
|
95 |
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
|
96 |
-
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
# Tokenizer
|
99 |
# LLM
|
100 |
# Image Adapter
|
101 |
load_text_model()
|
102 |
|
|
|
103 |
@spaces.GPU()
|
104 |
@torch.no_grad()
|
105 |
-
def stream_chat(input_image: Image.Image):
|
106 |
torch.cuda.empty_cache()
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
# Preprocess image
|
109 |
-
image = clip_processor(images=input_image, return_tensors='pt').pixel_values
|
110 |
-
image =
|
|
|
|
|
|
|
111 |
|
112 |
# Tokenize the prompt
|
113 |
-
prompt = tokenizer.encode(
|
114 |
|
115 |
# Embed image
|
116 |
-
with torch.amp.autocast_mode.autocast(
|
117 |
-
vision_outputs = clip_model(pixel_values=
|
118 |
-
image_features = vision_outputs.hidden_states
|
119 |
embedded_images = image_adapter(image_features)
|
120 |
-
embedded_images = embedded_images.to(
|
121 |
|
122 |
# Embed prompt
|
123 |
-
prompt_embeds = text_model.model.embed_tokens(prompt.to(
|
124 |
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
|
125 |
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
|
|
|
126 |
|
127 |
# Construct prompts
|
128 |
inputs_embeds = torch.cat([
|
129 |
embedded_bos.expand(embedded_images.shape[0], -1, -1),
|
130 |
embedded_images.to(dtype=embedded_bos.dtype),
|
131 |
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
|
|
|
132 |
], dim=1)
|
133 |
|
134 |
input_ids = torch.cat([
|
135 |
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
|
136 |
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
|
137 |
prompt,
|
138 |
-
|
|
|
139 |
attention_mask = torch.ones_like(input_ids)
|
140 |
|
141 |
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
|
142 |
-
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
|
|
|
143 |
|
144 |
# Trim off the prompt
|
145 |
generate_ids = generate_ids[:, input_ids.shape[1]:]
|
146 |
-
if generate_ids[0][-1] == tokenizer.eos_token_id:
|
147 |
generate_ids = generate_ids[:, :-1]
|
148 |
|
149 |
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
|
@@ -153,23 +268,47 @@ def stream_chat(input_image: Image.Image):
|
|
153 |
|
154 |
@spaces.GPU()
|
155 |
@torch.no_grad()
|
156 |
-
def stream_chat_mod(input_image: Image.Image, max_new_tokens: int=300,
|
157 |
global use_inference_client
|
158 |
global text_model
|
159 |
torch.cuda.empty_cache()
|
160 |
gc.collect()
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
# Preprocess image
|
163 |
-
image = clip_processor(images=input_image, return_tensors='pt').pixel_values
|
164 |
-
image =
|
|
|
|
|
|
|
165 |
|
166 |
# Tokenize the prompt
|
167 |
-
prompt = tokenizer.encode(
|
168 |
|
169 |
# Embed image
|
170 |
with torch.amp.autocast_mode.autocast(device, enabled=True):
|
171 |
-
vision_outputs = clip_model(pixel_values=
|
172 |
-
image_features = vision_outputs.hidden_states
|
173 |
embedded_images = image_adapter(image_features)
|
174 |
embedded_images = embedded_images.to(device)
|
175 |
|
@@ -177,34 +316,34 @@ def stream_chat_mod(input_image: Image.Image, max_new_tokens: int=300, top_k: in
|
|
177 |
prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
|
178 |
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
|
179 |
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
|
|
|
180 |
|
181 |
# Construct prompts
|
182 |
inputs_embeds = torch.cat([
|
183 |
embedded_bos.expand(embedded_images.shape[0], -1, -1),
|
184 |
embedded_images.to(dtype=embedded_bos.dtype),
|
185 |
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
|
|
|
186 |
], dim=1)
|
187 |
|
188 |
input_ids = torch.cat([
|
189 |
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
|
190 |
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
|
191 |
prompt,
|
|
|
192 |
], dim=1).to(device)
|
193 |
attention_mask = torch.ones_like(input_ids)
|
194 |
|
195 |
-
|
196 |
-
# https://github.com/huggingface/transformers/issues/6535
|
197 |
-
# https://zenn.dev/hijikix/articles/8c445f4373fdcc ja
|
198 |
-
# https://github.com/ggerganov/llama.cpp/discussions/7712
|
199 |
-
# https://huggingface.co/docs/huggingface_hub/guides/inference#openai-compatibility
|
200 |
-
# https://huggingface.co/docs/huggingface_hub/v0.24.6/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation
|
201 |
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
|
202 |
-
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask,
|
203 |
-
|
|
|
|
|
204 |
|
205 |
# Trim off the prompt
|
206 |
generate_ids = generate_ids[:, input_ids.shape[1]:]
|
207 |
-
if generate_ids[0][-1] == tokenizer.eos_token_id:
|
208 |
generate_ids = generate_ids[:, :-1]
|
209 |
|
210 |
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
|
@@ -212,6 +351,14 @@ def stream_chat_mod(input_image: Image.Image, max_new_tokens: int=300, top_k: in
|
|
212 |
return caption.strip()
|
213 |
|
214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
def is_repo_name(s):
|
216 |
import re
|
217 |
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
@@ -290,16 +437,39 @@ def change_text_model(model_name: str=MODEL_PATH, use_client: bool=False, gguf_f
|
|
290 |
# original UI
|
291 |
with gr.Blocks() as demo:
|
292 |
gr.HTML(TITLE)
|
|
|
293 |
with gr.Row():
|
294 |
with gr.Column():
|
295 |
input_image = gr.Image(type="pil", label="Input Image")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
run_button = gr.Button("Caption")
|
297 |
|
298 |
with gr.Column():
|
299 |
output_caption = gr.Textbox(label="Caption")
|
300 |
|
301 |
-
run_button.click(fn=stream_chat, inputs=[input_image], outputs=[output_caption])
|
302 |
|
303 |
|
304 |
if __name__ == "__main__":
|
305 |
-
demo.launch()
|
|
|
8 |
import torch.amp.autocast_mode
|
9 |
from PIL import Image
|
10 |
import os
|
11 |
+
import torchvision.transforms.functional as TVF
|
12 |
import gc
|
13 |
+
from peft import PeftConfig
|
14 |
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
26 |
}
|
27 |
|
28 |
CLIP_PATH = "google/siglip-so400m-patch14-384"
|
|
|
29 |
MODEL_PATH = list(llm_models.keys())[0]
|
30 |
+
CHECKPOINT_PATH = Path("9em124t2-499968")
|
31 |
+
LORA_PATH = CHECKPOINT_PATH / "text_model"
|
32 |
+
TITLE = "<h1><center>JoyCaption Alpha One (2024-09-20a)</center></h1>"
|
33 |
+
CAPTION_TYPE_MAP = {
|
34 |
+
("descriptive", "formal", False, False): ["Write a descriptive caption for this image in a formal tone."],
|
35 |
+
("descriptive", "formal", False, True): ["Write a descriptive caption for this image in a formal tone within {word_count} words."],
|
36 |
+
("descriptive", "formal", True, False): ["Write a {length} descriptive caption for this image in a formal tone."],
|
37 |
+
("descriptive", "informal", False, False): ["Write a descriptive caption for this image in a casual tone."],
|
38 |
+
("descriptive", "informal", False, True): ["Write a descriptive caption for this image in a casual tone within {word_count} words."],
|
39 |
+
("descriptive", "informal", True, False): ["Write a {length} descriptive caption for this image in a casual tone."],
|
40 |
+
|
41 |
+
("training_prompt", "formal", False, False): ["Write a stable diffusion prompt for this image."],
|
42 |
+
("training_prompt", "formal", False, True): ["Write a stable diffusion prompt for this image within {word_count} words."],
|
43 |
+
("training_prompt", "formal", True, False): ["Write a {length} stable diffusion prompt for this image."],
|
44 |
+
|
45 |
+
("rng-tags", "formal", False, False): ["Write a list of Booru tags for this image."],
|
46 |
+
("rng-tags", "formal", False, True): ["Write a list of Booru tags for this image within {word_count} words."],
|
47 |
+
("rng-tags", "formal", True, False): ["Write a {length} list of Booru tags for this image."],
|
48 |
+
}
|
49 |
|
50 |
class ImageAdapter(nn.Module):
|
51 |
+
def __init__(self, input_features: int, output_features: int, ln1: bool, pos_emb: bool, num_image_tokens: int, deep_extract: bool):
|
52 |
super().__init__()
|
53 |
+
self.deep_extract = deep_extract
|
54 |
+
|
55 |
+
if self.deep_extract:
|
56 |
+
input_features = input_features * 5
|
57 |
+
|
58 |
self.linear1 = nn.Linear(input_features, output_features)
|
59 |
self.activation = nn.GELU()
|
60 |
self.linear2 = nn.Linear(output_features, output_features)
|
61 |
+
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
|
62 |
+
self.pos_emb = None if not pos_emb else nn.Parameter(torch.zeros(num_image_tokens, input_features))
|
63 |
+
|
64 |
+
# Mode token
|
65 |
+
#self.mode_token = nn.Embedding(n_modes, output_features)
|
66 |
+
#self.mode_token.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
|
67 |
+
|
68 |
+
# Other tokens (<|image_start|>, <|image_end|>, <|eot_id|>)
|
69 |
+
self.other_tokens = nn.Embedding(3, output_features)
|
70 |
+
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02) # Matches HF's implementation of llama3
|
71 |
+
|
72 |
def forward(self, vision_outputs: torch.Tensor):
|
73 |
+
if self.deep_extract:
|
74 |
+
x = torch.concat((
|
75 |
+
vision_outputs[-2],
|
76 |
+
vision_outputs[3],
|
77 |
+
vision_outputs[7],
|
78 |
+
vision_outputs[13],
|
79 |
+
vision_outputs[20],
|
80 |
+
), dim=-1)
|
81 |
+
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}" # batch, tokens, features
|
82 |
+
assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
|
83 |
+
else:
|
84 |
+
x = vision_outputs[-2]
|
85 |
+
|
86 |
+
x = self.ln1(x)
|
87 |
+
|
88 |
+
if self.pos_emb is not None:
|
89 |
+
assert x.shape[-2:] == self.pos_emb.shape, f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
|
90 |
+
x = x + self.pos_emb
|
91 |
+
|
92 |
+
x = self.linear1(x)
|
93 |
x = self.activation(x)
|
94 |
x = self.linear2(x)
|
95 |
+
|
96 |
+
# Mode token
|
97 |
+
#mode_token = self.mode_token(mode)
|
98 |
+
#assert mode_token.shape == (x.shape[0], mode_token.shape[1], x.shape[2]), f"Expected {(x.shape[0], 1, x.shape[2])}, got {mode_token.shape}"
|
99 |
+
#x = torch.cat((x, mode_token), dim=1)
|
100 |
+
|
101 |
+
# <|image_start|>, IMAGE, <|image_end|>
|
102 |
+
other_tokens = self.other_tokens(torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(x.shape[0], -1))
|
103 |
+
assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
|
104 |
+
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
|
105 |
+
|
106 |
return x
|
107 |
|
108 |
+
def get_eot_embedding(self):
|
109 |
+
return self.other_tokens(torch.tensor([2], device=self.other_tokens.weight.device)).squeeze(0)
|
110 |
+
|
111 |
+
|
112 |
# https://huggingface.co/docs/transformers/v4.44.2/gguf
|
113 |
# https://github.com/city96/ComfyUI-GGUF/issues/7
|
114 |
# https://github.com/THUDM/ChatGLM-6B/issues/18
|
|
|
117 |
# https://huggingface.co/docs/transformers/main/en/main_classes/quantization#offload-between-cpu-and-gpu
|
118 |
# https://huggingface.co/google/flan-ul2/discussions/8
|
119 |
# https://huggingface.co/blog/4bit-transformers-bitsandbytes
|
120 |
+
# https://huggingface.co/docs/transformers/main/en/peft
|
121 |
+
# https://huggingface.co/docs/transformers/main/en/peft#enable-and-disable-adapters
|
122 |
tokenizer = None
|
123 |
text_model_client = None
|
124 |
text_model = None
|
125 |
image_adapter = None
|
126 |
+
peft_config = None
|
127 |
def load_text_model(model_name: str=MODEL_PATH, gguf_file: str | None=None, is_nf4: bool=True):
|
128 |
global tokenizer
|
129 |
global text_model
|
130 |
global image_adapter
|
131 |
+
global peft_config
|
132 |
global text_model_client #
|
133 |
global use_inference_client #
|
134 |
try:
|
|
|
148 |
if device == "cpu": text_model = AutoModelForCausalLM.from_pretrained(model_name, gguf_file=gguf_file, device_map=device, torch_dtype=torch.bfloat16).eval()
|
149 |
elif is_nf4: text_model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=nf4_config, device_map=device, torch_dtype=torch.bfloat16).eval()
|
150 |
else: text_model = AutoModelForCausalLM.from_pretrained(model_name, device_map=device, torch_dtype=torch.bfloat16).eval()
|
151 |
+
if LORA_PATH.exists():
|
152 |
+
print("Loading VLM's custom text model")
|
153 |
+
if is_nf4: peft_config = PeftConfig.from_pretrained(LORA_PATH, device_map=device, quantization_config=nf4_config)
|
154 |
+
else: peft_config = PeftConfig.from_pretrained(LORA_PATH, device_map=device)
|
155 |
+
text_model.add_adapter(peft_config)
|
156 |
+
text_model.enable_adapters()
|
157 |
print("Loading image adapter")
|
158 |
+
image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size, False, False, 38, False).eval().to("cpu")
|
159 |
image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu", weights_only=True))
|
160 |
image_adapter.eval().to(device)
|
161 |
except Exception as e:
|
|
|
170 |
# Load CLIP
|
171 |
print("Loading CLIP")
|
172 |
clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
|
173 |
+
clip_model = AutoModel.from_pretrained(CLIP_PATH).vision_model
|
174 |
+
|
175 |
+
if (CHECKPOINT_PATH / "clip_model.pt").exists():
|
176 |
+
print("Loading VLM's custom vision model")
|
177 |
+
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu')
|
178 |
+
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
|
179 |
+
clip_model.load_state_dict(checkpoint)
|
180 |
+
del checkpoint
|
181 |
+
|
182 |
+
clip_model.eval().requires_grad_(False).to(device)
|
183 |
|
184 |
# Tokenizer
|
185 |
# LLM
|
186 |
# Image Adapter
|
187 |
load_text_model()
|
188 |
|
189 |
+
|
190 |
@spaces.GPU()
|
191 |
@torch.no_grad()
|
192 |
+
def stream_chat(input_image: Image.Image, caption_type: str, caption_tone: str, caption_length: str | int) -> str:
|
193 |
torch.cuda.empty_cache()
|
194 |
|
195 |
+
# 'any' means no length specified
|
196 |
+
length = None if caption_length == "any" else caption_length
|
197 |
+
|
198 |
+
if isinstance(length, str):
|
199 |
+
try:
|
200 |
+
length = int(length)
|
201 |
+
except ValueError:
|
202 |
+
pass
|
203 |
+
|
204 |
+
# 'rng-tags' and 'training_prompt' don't have formal/informal tones
|
205 |
+
if caption_type == "rng-tags" or caption_type == "training_prompt":
|
206 |
+
caption_tone = "formal"
|
207 |
+
|
208 |
+
# Build prompt
|
209 |
+
prompt_key = (caption_type, caption_tone, isinstance(length, str), isinstance(length, int))
|
210 |
+
if prompt_key not in CAPTION_TYPE_MAP:
|
211 |
+
raise ValueError(f"Invalid caption type: {prompt_key}")
|
212 |
+
|
213 |
+
prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(length=length, word_count=length)
|
214 |
+
print(f"Prompt: {prompt_str}")
|
215 |
+
|
216 |
# Preprocess image
|
217 |
+
#image = clip_processor(images=input_image, return_tensors='pt').pixel_values
|
218 |
+
image = input_image.resize((384, 384), Image.LANCZOS)
|
219 |
+
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
|
220 |
+
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
|
221 |
+
pixel_values = pixel_values.to('cuda')
|
222 |
|
223 |
# Tokenize the prompt
|
224 |
+
prompt = tokenizer.encode(prompt_str, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
|
225 |
|
226 |
# Embed image
|
227 |
+
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
|
228 |
+
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
|
229 |
+
image_features = vision_outputs.hidden_states
|
230 |
embedded_images = image_adapter(image_features)
|
231 |
+
embedded_images = embedded_images.to('cuda')
|
232 |
|
233 |
# Embed prompt
|
234 |
+
prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))
|
235 |
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
|
236 |
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
|
237 |
+
eot_embed = image_adapter.get_eot_embedding().unsqueeze(0).to(dtype=text_model.dtype)
|
238 |
|
239 |
# Construct prompts
|
240 |
inputs_embeds = torch.cat([
|
241 |
embedded_bos.expand(embedded_images.shape[0], -1, -1),
|
242 |
embedded_images.to(dtype=embedded_bos.dtype),
|
243 |
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
|
244 |
+
eot_embed.expand(embedded_images.shape[0], -1, -1),
|
245 |
], dim=1)
|
246 |
|
247 |
input_ids = torch.cat([
|
248 |
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
|
249 |
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
|
250 |
prompt,
|
251 |
+
torch.tensor([[tokenizer.convert_tokens_to_ids("<|eot_id|>")]], dtype=torch.long),
|
252 |
+
], dim=1).to('cuda')
|
253 |
attention_mask = torch.ones_like(input_ids)
|
254 |
|
255 |
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
|
256 |
+
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
|
257 |
+
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, suppress_tokens=None) # Uses the default which is temp=0.6, top_p=0.9
|
258 |
|
259 |
# Trim off the prompt
|
260 |
generate_ids = generate_ids[:, input_ids.shape[1]:]
|
261 |
+
if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
|
262 |
generate_ids = generate_ids[:, :-1]
|
263 |
|
264 |
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
|
|
|
268 |
|
269 |
@spaces.GPU()
|
270 |
@torch.no_grad()
|
271 |
+
def stream_chat_mod(input_image: Image.Image, caption_type: str, caption_tone: str, caption_length: str | int, max_new_tokens: int=300, top_p: float=0.9, temperature: float=0.6, progress=gr.Progress(track_tqdm=True)) -> str:
|
272 |
global use_inference_client
|
273 |
global text_model
|
274 |
torch.cuda.empty_cache()
|
275 |
gc.collect()
|
276 |
|
277 |
+
# 'any' means no length specified
|
278 |
+
length = None if caption_length == "any" else caption_length
|
279 |
+
|
280 |
+
if isinstance(length, str):
|
281 |
+
try:
|
282 |
+
length = int(length)
|
283 |
+
except ValueError:
|
284 |
+
pass
|
285 |
+
|
286 |
+
# 'rng-tags' and 'training_prompt' don't have formal/informal tones
|
287 |
+
if caption_type == "rng-tags" or caption_type == "training_prompt":
|
288 |
+
caption_tone = "formal"
|
289 |
+
|
290 |
+
# Build prompt
|
291 |
+
prompt_key = (caption_type, caption_tone, isinstance(length, str), isinstance(length, int))
|
292 |
+
if prompt_key not in CAPTION_TYPE_MAP:
|
293 |
+
raise ValueError(f"Invalid caption type: {prompt_key}")
|
294 |
+
|
295 |
+
prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(length=length, word_count=length)
|
296 |
+
print(f"Prompt: {prompt_str}")
|
297 |
+
|
298 |
# Preprocess image
|
299 |
+
#image = clip_processor(images=input_image, return_tensors='pt').pixel_values
|
300 |
+
image = input_image.resize((384, 384), Image.LANCZOS)
|
301 |
+
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
|
302 |
+
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
|
303 |
+
pixel_values = pixel_values.to(device)
|
304 |
|
305 |
# Tokenize the prompt
|
306 |
+
prompt = tokenizer.encode(prompt_str, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
|
307 |
|
308 |
# Embed image
|
309 |
with torch.amp.autocast_mode.autocast(device, enabled=True):
|
310 |
+
vision_outputs = clip_model(pixel_values=pixel_values, output_hidden_states=True)
|
311 |
+
image_features = vision_outputs.hidden_states
|
312 |
embedded_images = image_adapter(image_features)
|
313 |
embedded_images = embedded_images.to(device)
|
314 |
|
|
|
316 |
prompt_embeds = text_model.model.embed_tokens(prompt.to(device))
|
317 |
assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
|
318 |
embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
|
319 |
+
eot_embed = image_adapter.get_eot_embedding().unsqueeze(0).to(dtype=text_model.dtype)
|
320 |
|
321 |
# Construct prompts
|
322 |
inputs_embeds = torch.cat([
|
323 |
embedded_bos.expand(embedded_images.shape[0], -1, -1),
|
324 |
embedded_images.to(dtype=embedded_bos.dtype),
|
325 |
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
|
326 |
+
eot_embed.expand(embedded_images.shape[0], -1, -1),
|
327 |
], dim=1)
|
328 |
|
329 |
input_ids = torch.cat([
|
330 |
torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
|
331 |
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
|
332 |
prompt,
|
333 |
+
torch.tensor([[tokenizer.convert_tokens_to_ids("<|eot_id|>")]], dtype=torch.long),
|
334 |
], dim=1).to(device)
|
335 |
attention_mask = torch.ones_like(input_ids)
|
336 |
|
337 |
+
text_model.to(device)
|
|
|
|
|
|
|
|
|
|
|
338 |
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
|
339 |
+
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
|
340 |
+
#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, suppress_tokens=None) # Uses the default which is temp=0.6, top_p=0.9
|
341 |
+
generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=max_new_tokens,
|
342 |
+
do_sample=True, suppress_tokens=None, top_p=top_p, temperature=temperature)
|
343 |
|
344 |
# Trim off the prompt
|
345 |
generate_ids = generate_ids[:, input_ids.shape[1]:]
|
346 |
+
if generate_ids[0][-1] == tokenizer.eos_token_id or generate_ids[0][-1] == tokenizer.convert_tokens_to_ids("<|eot_id|>"):
|
347 |
generate_ids = generate_ids[:, :-1]
|
348 |
|
349 |
caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
|
|
|
351 |
return caption.strip()
|
352 |
|
353 |
|
354 |
+
# https://huggingface.co/docs/transformers/v4.44.2/main_classes/text_generation#transformers.FlaxGenerationMixin.generate
|
355 |
+
# https://github.com/huggingface/transformers/issues/6535
|
356 |
+
# https://zenn.dev/hijikix/articles/8c445f4373fdcc ja
|
357 |
+
# https://github.com/ggerganov/llama.cpp/discussions/7712
|
358 |
+
# https://huggingface.co/docs/huggingface_hub/guides/inference#openai-compatibility
|
359 |
+
# https://huggingface.co/docs/huggingface_hub/v0.24.6/en/package_reference/inference_client#huggingface_hub.InferenceClient.text_generation
|
360 |
+
|
361 |
+
|
362 |
def is_repo_name(s):
|
363 |
import re
|
364 |
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
|
|
437 |
# original UI
|
438 |
with gr.Blocks() as demo:
|
439 |
gr.HTML(TITLE)
|
440 |
+
|
441 |
with gr.Row():
|
442 |
with gr.Column():
|
443 |
input_image = gr.Image(type="pil", label="Input Image")
|
444 |
+
|
445 |
+
caption_type = gr.Dropdown(
|
446 |
+
choices=["descriptive", "training_prompt", "rng-tags"],
|
447 |
+
label="Caption Type",
|
448 |
+
value="descriptive",
|
449 |
+
)
|
450 |
+
|
451 |
+
caption_tone = gr.Dropdown(
|
452 |
+
choices=["formal", "informal"],
|
453 |
+
label="Caption Tone",
|
454 |
+
value="formal",
|
455 |
+
)
|
456 |
+
|
457 |
+
caption_length = gr.Dropdown(
|
458 |
+
choices=["any", "very short", "short", "medium-length", "long", "very long"] +
|
459 |
+
[str(i) for i in range(20, 261, 10)],
|
460 |
+
label="Caption Length",
|
461 |
+
value="any",
|
462 |
+
)
|
463 |
+
|
464 |
+
gr.Markdown("**Note:** Caption tone doesn't affect `rng-tags` and `training_prompt`.")
|
465 |
+
|
466 |
run_button = gr.Button("Caption")
|
467 |
|
468 |
with gr.Column():
|
469 |
output_caption = gr.Textbox(label="Caption")
|
470 |
|
471 |
+
run_button.click(fn=stream_chat, inputs=[input_image, caption_type, caption_tone, caption_length], outputs=[output_caption])
|
472 |
|
473 |
|
474 |
if __name__ == "__main__":
|
475 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -7,4 +7,6 @@ bitsandbytes
|
|
7 |
Pillow
|
8 |
protobuf
|
9 |
gguf
|
10 |
-
numpy<2.0.0
|
|
|
|
|
|
7 |
Pillow
|
8 |
protobuf
|
9 |
gguf
|
10 |
+
numpy<2.0.0
|
11 |
+
peft
|
12 |
+
torchvision
|