Spaces:
Running
on
Zero
Running
on
Zero
import os | |
if os.environ.get("SPACES_ZERO_GPU") is not None: import spaces | |
import gradio as gr | |
from joycaption import stream_chat_mod, get_text_model, change_text_model, get_repo_gguf | |
JC_TITLE_MD = "<h1><center>JoyCaption Alpha Two Mod</center></h1>" | |
JC_DESC_MD = """This space is mod of [fancyfeast/joy-caption-alpha-two](https://huggingface.co/spaces/fancyfeast/joy-caption-alpha-two), | |
[Wi-zz/joy-caption-pre-alpha](https://huggingface.co/Wi-zz/joy-caption-pre-alpha). | |
Thanks to [dominic1021](https://huggingface.co/dominic1021), [IceHibiki](https://huggingface.co/IceHibiki).""" | |
css = """ | |
.info {text-align:center; !important} | |
""" | |
with gr.Blocks(fill_width=True, css=css, delete_cache=(60, 3600)) as demo: | |
gr.HTML(JC_TITLE_MD) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Group(): | |
jc_input_image = gr.Image(type="pil", label="Input Image", sources=["upload", "clipboard"], height=384) | |
with gr.Accordion("Options", open=False): | |
with gr.Row(): | |
jc_caption_type = gr.Dropdown( | |
choices=["Descriptive", "Descriptive (Informal)", "Training Prompt", "MidJourney", "Booru tag list", "Booru-like tag list", "Art Critic", "Product Listing", "Social Media Post"], | |
label="Caption Type", | |
value="Descriptive", | |
) | |
jc_caption_length = gr.Dropdown( | |
choices=["any", "very short", "short", "medium-length", "long", "very long"] + | |
[str(i) for i in range(20, 261, 10)], | |
label="Caption Length", | |
value="long", | |
) | |
jc_extra_options = gr.CheckboxGroup( | |
choices=[ | |
"If there is a person/character in the image you must refer to them as {name}.", | |
"Do NOT include information about people/characters that cannot be changed (like ethnicity, gender, etc), but do still include changeable attributes (like hair style).", | |
"Include information about lighting.", | |
"Include information about camera angle.", | |
"Include information about whether there is a watermark or not.", | |
"Include information about whether there are JPEG artifacts or not.", | |
"If it is a photo you MUST include information about what camera was likely used and details such as aperture, shutter speed, ISO, etc.", | |
"Do NOT include anything sexual; keep it PG.", | |
"Do NOT mention the image's resolution.", | |
"You MUST include information about the subjective aesthetic quality of the image from low to very high.", | |
"Include information on the image's composition style, such as leading lines, rule of thirds, or symmetry.", | |
"Do NOT mention any text that is in the image.", | |
"Specify the depth of field and whether the background is in focus or blurred.", | |
"If applicable, mention the likely use of artificial or natural lighting sources.", | |
"Do NOT use any ambiguous language.", | |
"Include whether the image is sfw, suggestive, or nsfw.", | |
"ONLY describe the most important elements of the image." | |
], | |
label="Extra Options" | |
) | |
with gr.Row(): | |
jc_name_input = gr.Textbox(label="Person/Character Name (if applicable)") | |
gr.Markdown("**Note:** Name input is only used if an Extra Option is selected that requires it.") | |
jc_custom_prompt = gr.Textbox(label="Custom Prompt (optional, will override all other settings)") | |
gr.Markdown("**Note:** Alpha Two is not a general instruction follower and will not follow prompts outside its training data well. Use this feature with caution.") | |
with gr.Accordion("Advanced", open=False): | |
with gr.Row(): | |
jc_text_model = gr.Dropdown(label="LLM Model", info="You can enter a huggingface model repo_id to want to use.", | |
choices=get_text_model(), value=get_text_model()[0], | |
allow_custom_value=True, interactive=True, min_width=320) | |
jc_gguf = gr.Dropdown(label=f"GGUF Filename", choices=[], value="", | |
allow_custom_value=True, min_width=320, visible=False) | |
jc_nf4 = gr.Checkbox(label="Use NF4 quantization", value=True) | |
jc_lora = gr.Checkbox(label="Use Custom VLM", info="Llama 3 BF16 only", value=True) | |
jc_text_model_button = gr.Button("Load Model", variant="secondary", visible=False) | |
jc_use_inference_client = gr.Checkbox(label="Use Inference Client", value=False, visible=False) | |
with gr.Row(): | |
jc_tokens = gr.Slider(minimum=1, maximum=4096, value=300, step=1, label="Max tokens") | |
jc_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature") | |
jc_topp = gr.Slider(minimum=0, maximum=2.0, value=0.9, step=0.01, label="Top-P") | |
jc_run_button = gr.Button("Caption", variant="primary") | |
with gr.Column(): | |
jc_output_prompt = gr.Textbox(label="Prompt that was used") | |
jc_output_caption = gr.Textbox(label="Caption", show_copy_button=True) | |
gr.Markdown(JC_DESC_MD, elem_classes="info") | |
gr.LoginButton() | |
gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)") | |
jc_run_button.click(fn=stream_chat_mod, inputs=[jc_input_image, jc_caption_type, jc_caption_length, jc_extra_options, jc_name_input, jc_custom_prompt, | |
jc_tokens, jc_topp, jc_temperature, jc_text_model], outputs=[jc_output_prompt, jc_output_caption]) | |
jc_text_model.change(change_text_model, [jc_text_model, jc_use_inference_client, jc_gguf, jc_nf4, jc_lora], [jc_text_model], show_api=False) | |
#jc_text_model_button.click(change_text_model, [jc_text_model, jc_use_inference_client, jc_gguf, jc_nf4], [jc_text_model], show_api=False) | |
#jc_text_model.change(get_repo_gguf, [jc_text_model], [jc_gguf], show_api=False) | |
#jc_use_inference_client.change(change_text_model, [jc_text_model, jc_use_inference_client], [jc_text_model], show_api=False) | |
if __name__ == "__main__": | |
#demo.queue() | |
demo.launch() | |