Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
from loadimg import load_img | |
import spaces | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
torch.set_float32_matmul_precision(["high", "highest"][0]) | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"briaai/RMBG-2.0", trust_remote_code=True | |
) | |
device_type = 'cuda' if torch.cuda.is_available() else 'cpu' | |
birefnet.to(device_type) | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
output_folder = 'output_images' | |
if not os.path.exists(output_folder): | |
os.makedirs(output_folder) | |
def fn(image): | |
im = load_img(image, output_type="pil") | |
im = im.convert("RGB") | |
origin = im.copy() | |
image = process(im) | |
image_path = os.path.join(output_folder, "no_bg_image.png") | |
image.save(image_path) | |
return (image, origin), image_path | |
def process(image): | |
image_size = image.size | |
input_images = transform_image(image).unsqueeze(0).to(device_type) | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
image.putalpha(mask) | |
return image | |
def process_file(f): | |
name_path = f.rsplit(".",1)[0]+".png" | |
im = load_img(f, output_type="pil") | |
im = im.convert("RGB") | |
transparent = process(im) | |
transparent.save(name_path) | |
return name_path | |
slider1 = ImageSlider(label="RMBG-2.0", type="pil") | |
slider2 = ImageSlider(label="RMBG-2.0", type="pil") | |
image = gr.Image(label="Upload an image") | |
image2 = gr.Image(label="Upload an image",type="filepath") | |
text = gr.Textbox(label="Paste an image URL") | |
png_file = gr.File(label="output png file") | |
chameleon = load_img("sea_fortune.jpg", output_type="pil") | |
url = "http://farm9.staticflickr.com/8488/8228323072_76eeddfea3_z.jpg" | |
tab1 = gr.Interface( | |
fn, inputs=image, outputs=[slider1, gr.File(label="output png file")], examples=[chameleon], api_name="image" | |
) | |
tab2 = gr.Interface(fn, inputs=text, outputs=[slider2, gr.File(label="output png file")], examples=[url], api_name="text") | |
tab3 = gr.Interface(process_file, inputs=image2, outputs=png_file, examples=["sea_fortune.jpg"], api_name="png") | |
demo = gr.TabbedInterface( | |
[tab1, tab2], ["input image", "input url"], title="RMBG-2.0 for background removal <br> To purchase a commercial license, simply click <a href='https://go.bria.ai/3ZCBTLH' target='_blank'><b>Here</b></a>" | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True) |