File size: 10,367 Bytes
b13c502
c98b207
 
 
d068d4a
c98b207
3f5fb82
b13c502
4d87b14
8e4e648
 
b13c502
c98b207
300e23e
c98b207
 
 
 
a0c9f98
c98b207
8e4e648
 
a0c9f98
8e4e648
d454525
8e4e648
a0c9f98
f324a05
17410b0
f324a05
c98b207
 
3269b1e
 
 
 
c98b207
 
f8349ca
b13c502
300e23e
 
b13c502
d616ff6
b13c502
 
c98b207
 
8e4e648
 
 
 
4d87b14
e740e32
 
 
 
8e4e648
 
 
 
 
 
 
e740e32
8e4e648
 
 
 
 
 
 
 
 
 
 
 
 
4d87b14
8e4e648
4d87b14
8e4e648
4d87b14
8e4e648
4d87b14
8e4e648
 
 
 
e740e32
 
8e4e648
 
 
 
 
 
 
b13c502
3269b1e
90b9de8
 
b13c502
8e4e648
c98b207
8e4e648
 
 
 
 
 
c98b207
2692054
3269b1e
8e4e648
3269b1e
67d3fd3
ac56402
775d6e0
0620ff6
8e4e648
b769a0c
0620ff6
b13c502
8e4e648
 
 
 
 
 
b13c502
 
300e23e
 
 
b13c502
300e23e
 
 
3269b1e
 
c98b207
3269b1e
 
c98b207
300e23e
bf65021
300e23e
 
 
 
 
 
 
 
bf65021
c98b207
 
f324a05
cf7a112
b13c502
ac56402
cf7a112
e7455bb
93f18de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60e7596
93f18de
 
3269b1e
60e7596
e7455bb
f324a05
c98b207
 
 
 
 
 
0d0766f
c98b207
a927087
c98b207
 
 
 
 
 
 
 
 
 
17410b0
3269b1e
c98b207
17410b0
300e23e
c98b207
 
c3e970b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3269b1e
 
 
 
 
 
 
 
c98b207
a927087
 
c98b207
 
 
bb45d22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread

import pymupdf
import docx
from pptx import Presentation


MODEL_LIST = ["THUDM/glm-4v-9b"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]

TITLE = "<h1>Multimodal Model for Complex Doc Extraction</h1>"

DESCRIPTION = f"""
<center>
<p>๐Ÿ˜Š A Demo For  Complex Doc Extraction via GLM4.
<br>
๐Ÿš€ MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a>
<br>
โœจ Important: Do not upload any sensitive documents.
<br>
๐Ÿ™‡โ€โ™‚๏ธ May be rebuilding from time to time.</p>
</center>"""

CSS = """
h1 {
    text-align: center;
    display: block;
}
"""

model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True
).to(0)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model.eval()


def extract_text(path):
    return open(path, 'r').read()

def extract_pdf(path):
    doc = pymupdf.open(path)
    text = ""
    for page in doc:
        text += page.get_text()
    return text

def extract_docx(path):
    doc = docx.Document(path)
    data = []
    for paragraph in doc.paragraphs:
        data.append(paragraph.text)
    content = '\n\n'.join(data)
    return content

def extract_pptx(path):
    prs = Presentation(path)
    text = ""
    for slide in prs.slides:
        for shape in slide.shapes:
            if hasattr(shape, "text"):
                text += shape.text + "\n"
    return text

def mode_load(path):
    choice = ""
    file_type = path.split(".")[-1]
    print(file_type)
    if file_type in ["pdf", "txt", "py", "docx", "pptx", "json", "cpp", "md"]:
        if file_type.endswith("pdf"):
            content = extract_pdf(path)
        elif file_type.endswith("docx"):
            content = extract_docx(path)
        elif file_type.endswith("pptx"):
            content = extract_pptx(path)
        else:
            content = extract_text(path)
        choice = "doc"
        print(content[:100])
        return choice, content[:5000]
    elif file_type in ["png", "jpg", "jpeg", "bmp", "tiff", "webp"]:
        content = Image.open(path).convert('RGB')
        choice = "image"
        return choice, content
    else:
        raise gr.Error("Oops, unsupported files.")

@spaces.GPU()
def stream_chat(message, history: list, temperature: float, max_length: int, top_p: float, top_k: int, penalty: float):
    print(f'message is - {message}')
    print(f'history is - {history}')
    conversation = []
    prompt_files = []
    if message["files"]:
        choice, contents = mode_load(message["files"][-1])
        if choice == "image":
            conversation.append({"role": "user", "image": contents, "content": message['text']})
        elif choice == "doc":
            format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
            conversation.append({"role": "user", "content": format_msg})
    else:
        if len(history) == 0:
            #raise gr.Error("Please upload an image first.")
            contents = None
            conversation.append({"role": "user", "content": message['text']})
        else:
            #image = Image.open(history[0][0][0])
            for prompt, answer in history:
                if answer is None:
                    prompt_files.append(prompt[0])
                    conversation.extend([{"role": "user", "content": ""},{"role": "assistant", "content": ""}])
                else:
                    conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
            choice, contents = mode_load(prompt_files[-1])
            if choice == "image":
                conversation.append({"role": "user", "image": contents, "content": message['text']})
            elif choice == "doc":
                format_msg = contents + "\n\n\n" + "{} files uploaded.\n" + message['text']
                conversation.append({"role": "user", "content": format_msg})
    print(f"Conversation is -\n{conversation}")

    input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        max_length=max_length,
        streamer=streamer,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=penalty,
        eos_token_id=[151329, 151336, 151338],
    )
    gen_kwargs = {**input_ids, **generate_kwargs}

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=gen_kwargs)
        thread.start()
        buffer = ""
        for new_text in streamer:
            buffer += new_text
            yield buffer
 



chatbot = gr.Chatbot()
chat_input = gr.MultimodalTextbox(
    interactive=True,
    placeholder="Enter message or upload a file one time...",
    show_label=False,

) 

prompt_extraction = '''
Please extract the Key information from the given document, including:
1 Date (DD/MM/YY)
2 Name(s) of Account Holder(s)
3 ID Document No.
4 ID Document Type
5 (Checked?)Are you the existing Personal e-Banking user?(expected result: yes/no)
6 (Checked?)Delete all Registered Bill Account Numbers for bill payment via any accounts under the above-mentioned ID Document or Business Registration No...(expected result: yes/no)
7 (Checked?)Add the following Bill Account Numbers for bill payment via any accounts under the above-mentioned ID Document or Business Registration No...(expected result: yes/no)
8 Signature(s) of Account Holder(s)
9 Account No.

Please Notice:
Return in JSON format, plain(no nested structure)
9 keys as listed in Objective section, don't ignore any item from the list even the value is None.
Please note:
Your accuracy of detecting checkboxes is relatively low, and unchecked boxes are often mistakenly identified as checked/true (resulting in many false positives).
Therefore, for all fields marked "(Checked?)", please be extra cautious and carefully examine the image before extracting the information, and if you are unsure, please default to false.
'''
prompt_signature = '''
I need your help to compare and score the similarity of two signatures. You should evaluate the signatures based on several dimensions and calculate a final similarity score. Here are the detailed instructions and dimensions for the comparison:

1. **General Shape and Flow**:
   - Compare the overall shape and flow of the two signatures.
   - Score from 0 to 10, where 0 means completely different and 10 means identical.

2. **Consistency of Loops and Strokes**:
   - Evaluate the presence and consistency of loops and strokes in the signatures.
   - Score from 0 to 10 based on the similarity of these features.

3. **Signature Characteristics**:
   - Compare specific characteristics such as dots, dashes, and unique flourishes.
   - Score from 0 to 10 based on the presence and similarity of these unique features.

4. **Stroke Pressure and Line Thickness**:
   - Analyze the pressure and thickness of the lines in the signatures.
   - Score from 0 to 10 based on how similar the pressure and thickness are between the two signatures.

5. **Angle and Slope**:
   - Evaluate the angle and slope of the characters in the signatures.
   - Score from 0 to 10 based on how similar the angles and slopes are.

6. **Spacing and Proportions**:
   - Compare the spacing between characters and the proportions of the signatures.
   - Score from 0 to 10 based on the similarity of spacing and proportions.

After scoring each dimension, calculate the final similarity score by averaging the scores from all dimensions. The final similarity score should be a value between 0 and 10, where 0 indicates no similarity and 10 indicates identical signatures.

Here is an example output format for the comparison:

```
General Shape and Flow: 8
Consistency of Loops and Strokes: 7
Signature Characteristics: 6
Stroke Pressure and Line Thickness: 5
Angle and Slope: 8
Spacing and Proportions: 7

Final Similarity Score: 6.83
```

Please help with this comparison and scoring for the two provided signatures. 

Important: Only score based on visual intuition, do not run code or provide coding solutions
'''




EXAMPLES = [
        [{"text": prompt_extraction, "files": ["./IMG_2700.png"]}],
        [{"text": prompt_signature , "files": ["./2.jpg"]}],
        [{"text": "Is it real?", "files": ["./spacecat.png"]}]
]

with gr.Blocks(css=CSS, theme="soft",fill_height=True) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.ChatInterface(
        fn=stream_chat,
        multimodal=True,
        textbox=chat_input,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="โš™๏ธ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=1024,
                maximum=8192,
                step=1,
                value=4096,
                label="Max Length",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=10,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                label="Repetition penalty",
                render=False,
            ),
        ],
    ),
    gr.Examples(EXAMPLES,[chat_input])


if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False, share=False)