File size: 9,578 Bytes
db6a3b7
 
 
 
b7b00e2
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
9880f3d
 
 
 
 
 
 
 
 
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b00e2
 
db6a3b7
 
 
 
 
 
b7b00e2
 
 
 
 
 
 
db6a3b7
 
 
 
 
 
 
 
 
b7b00e2
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b00e2
 
 
 
 
 
 
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import torch
import numpy as np
from plyfile import PlyData, PlyElement
from .general_utils import inverse_sigmoid, strip_symmetric, build_scaling_rotation
import utils3d


class Gaussian:
    def __init__(
            self, 
            aabb : list,
            sh_degree : int = 0,
            mininum_kernel_size : float = 0.0,
            scaling_bias : float = 0.01,
            opacity_bias : float = 0.1,
            scaling_activation : str = "exp",
            device='cuda'
        ):
        self.init_params = {
            'aabb': aabb,
            'sh_degree': sh_degree,
            'mininum_kernel_size': mininum_kernel_size,
            'scaling_bias': scaling_bias,
            'opacity_bias': opacity_bias,
            'scaling_activation': scaling_activation,
        }
        
        self.sh_degree = sh_degree
        self.active_sh_degree = sh_degree
        self.mininum_kernel_size = mininum_kernel_size 
        self.scaling_bias = scaling_bias
        self.opacity_bias = opacity_bias
        self.scaling_activation_type = scaling_activation
        self.device = device
        self.aabb = torch.tensor(aabb, dtype=torch.float32, device=device)
        self.setup_functions()

        self._xyz = None
        self._features_dc = None
        self._features_rest = None
        self._scaling = None
        self._rotation = None
        self._opacity = None

    def setup_functions(self):
        def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
            L = build_scaling_rotation(scaling_modifier * scaling, rotation)
            actual_covariance = L @ L.transpose(1, 2)
            symm = strip_symmetric(actual_covariance)
            return symm
        
        if self.scaling_activation_type == "exp":
            self.scaling_activation = torch.exp
            self.inverse_scaling_activation = torch.log
        elif self.scaling_activation_type == "softplus":
            self.scaling_activation = torch.nn.functional.softplus
            self.inverse_scaling_activation = lambda x: x + torch.log(-torch.expm1(-x))

        self.covariance_activation = build_covariance_from_scaling_rotation

        self.opacity_activation = torch.sigmoid
        self.inverse_opacity_activation = inverse_sigmoid

        self.rotation_activation = torch.nn.functional.normalize
        
        self.scale_bias = self.inverse_scaling_activation(torch.tensor(self.scaling_bias)).cuda()
        self.rots_bias = torch.zeros((4)).cuda()
        self.rots_bias[0] = 1
        self.opacity_bias = self.inverse_opacity_activation(torch.tensor(self.opacity_bias)).cuda()

    @property
    def get_scaling(self):
        scales = self.scaling_activation(self._scaling + self.scale_bias)
        scales = torch.square(scales) + self.mininum_kernel_size ** 2
        scales = torch.sqrt(scales)
        return scales
    
    @property
    def get_rotation(self):
        return self.rotation_activation(self._rotation + self.rots_bias[None, :])
    
    @property
    def get_xyz(self):
        return self._xyz * self.aabb[None, 3:] + self.aabb[None, :3]
    
    @property
    def get_features(self):
        return torch.cat((self._features_dc, self._features_rest), dim=2) if self._features_rest is not None else self._features_dc
    
    @property
    def get_opacity(self):
        return self.opacity_activation(self._opacity + self.opacity_bias)
    
    def get_covariance(self, scaling_modifier = 1):
        return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation + self.rots_bias[None, :])
    
    def from_scaling(self, scales):
        scales = torch.sqrt(torch.square(scales) - self.mininum_kernel_size ** 2)
        self._scaling = self.inverse_scaling_activation(scales) - self.scale_bias
        
    def from_rotation(self, rots):
        self._rotation = rots - self.rots_bias[None, :]
    
    def from_xyz(self, xyz):
        self._xyz = (xyz - self.aabb[None, :3]) / self.aabb[None, 3:]
        
    def from_features(self, features):
        self._features_dc = features
        
    def from_opacity(self, opacities):
        self._opacity = self.inverse_opacity_activation(opacities) - self.opacity_bias

    def construct_list_of_attributes(self):
        l = ['x', 'y', 'z', 'nx', 'ny', 'nz']
        # All channels except the 3 DC
        for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]):
            l.append('f_dc_{}'.format(i))
        l.append('opacity')
        for i in range(self._scaling.shape[1]):
            l.append('scale_{}'.format(i))
        for i in range(self._rotation.shape[1]):
            l.append('rot_{}'.format(i))
        return l
        
    def save_ply(self, path, transform=[[1, 0, 0], [0, 0, -1], [0, 1, 0]]):
        xyz = self.get_xyz.detach().cpu().numpy()
        normals = np.zeros_like(xyz)
        f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy()
        opacities = inverse_sigmoid(self.get_opacity).detach().cpu().numpy()
        scale = torch.log(self.get_scaling).detach().cpu().numpy()
        rotation = (self._rotation + self.rots_bias[None, :]).detach().cpu().numpy()
        
        if transform is not None:
            transform = np.array(transform)
            xyz = np.matmul(xyz, transform.T)
            rotation = utils3d.numpy.quaternion_to_matrix(rotation)
            rotation = np.matmul(transform, rotation)
            rotation = utils3d.numpy.matrix_to_quaternion(rotation)

        dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()]

        elements = np.empty(xyz.shape[0], dtype=dtype_full)
        attributes = np.concatenate((xyz, normals, f_dc, opacities, scale, rotation), axis=1)
        elements[:] = list(map(tuple, attributes))
        el = PlyElement.describe(elements, 'vertex')
        PlyData([el]).write(path)

    def load_ply(self, path, transform=[[1, 0, 0], [0, 0, -1], [0, 1, 0]]):
        plydata = PlyData.read(path)

        xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
                        np.asarray(plydata.elements[0]["y"]),
                        np.asarray(plydata.elements[0]["z"])),  axis=1)
        opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]

        features_dc = np.zeros((xyz.shape[0], 3, 1))
        features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
        features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
        features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])

        if self.sh_degree > 0:
            extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")]
            extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1]))
            assert len(extra_f_names)==3*(self.sh_degree + 1) ** 2 - 3
            features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
            for idx, attr_name in enumerate(extra_f_names):
                features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
            # Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
            features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1))

        scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
        scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1]))
        scales = np.zeros((xyz.shape[0], len(scale_names)))
        for idx, attr_name in enumerate(scale_names):
            scales[:, idx] = np.asarray(plydata.elements[0][attr_name])

        rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")]
        rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1]))
        rots = np.zeros((xyz.shape[0], len(rot_names)))
        for idx, attr_name in enumerate(rot_names):
            rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
            
        if transform is not None:
            transform = np.array(transform)
            xyz = np.matmul(xyz, transform)
            rotation = utils3d.numpy.quaternion_to_matrix(rotation)
            rotation = np.matmul(rotation, transform)
            rotation = utils3d.numpy.matrix_to_quaternion(rotation)
            
        # convert to actual gaussian attributes
        xyz = torch.tensor(xyz, dtype=torch.float, device=self.device)
        features_dc = torch.tensor(features_dc, dtype=torch.float, device=self.device).transpose(1, 2).contiguous()
        if self.sh_degree > 0:
            features_extra = torch.tensor(features_extra, dtype=torch.float, device=self.device).transpose(1, 2).contiguous()
        opacities = torch.sigmoid(torch.tensor(opacities, dtype=torch.float, device=self.device))
        scales = torch.exp(torch.tensor(scales, dtype=torch.float, device=self.device))
        rots = torch.tensor(rots, dtype=torch.float, device=self.device)
        
        # convert to _hidden attributes
        self._xyz = (xyz - self.aabb[None, :3]) / self.aabb[None, 3:]
        self._features_dc = features_dc
        if self.sh_degree > 0:
            self._features_rest = features_extra
        else:
            self._features_rest = None
        self._opacity = self.inverse_opacity_activation(opacities) - self.opacity_bias
        self._scaling = self.inverse_scaling_activation(torch.sqrt(torch.square(scales) - self.mininum_kernel_size ** 2)) - self.scale_bias
        self._rotation = rots - self.rots_bias[None, :]