Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,766 Bytes
db6a3b7 3057b36 7d475c1 db6a3b7 7d475c1 db6a3b7 3057b36 db6a3b7 7d475c1 db6a3b7 7d475c1 db6a3b7 3057b36 db6a3b7 7d475c1 db6a3b7 7d475c1 db6a3b7 7d475c1 db6a3b7 7d475c1 db6a3b7 7d475c1 db6a3b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
from typing import *
import numpy as np
import imageio
import uuid
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.utils import render_utils, postprocessing_utils
def preprocess_image(image: Image.Image) -> Image.Image:
"""
Preprocess the input image.
Args:
image (Image.Image): The input image.
Returns:
Image.Image: The preprocessed image.
"""
return pipeline.preprocess_image(image)
@spaces.GPU
def image_to_3d(image: Image.Image) -> Tuple[dict, str]:
"""
Convert an image to a 3D model.
Args:
image (Image.Image): The input image.
Returns:
dict: The information of the generated 3D model.
str: The path to the video of the 3D model.
"""
outputs = pipeline(image, formats=["gaussian", "mesh"], preprocess_image=False)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
model_id = uuid.uuid4()
video_path = f"/tmp/Trellis-demo/{model_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=15)
model = {'gaussian': outputs['gaussian'][0], 'mesh': outputs['mesh'][0], 'model_id': model_id}
return model, video_path
@spaces.GPU
def extract_glb(model: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model.
Args:
model (dict): The generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
glb = postprocessing_utils.to_glb(model['gaussian'], model['mesh'], simplify=mesh_simplify, texture_size=texture_size)
glb_path = f"/tmp/Trellis-demo/{model['model_id']}.glb"
glb.export(glb_path)
return glb_path, glb_path
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
with gr.Blocks() as demo:
gr.Markdown("""
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
* Upload an image and click "Generate" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
""")
with gr.Row():
with gr.Column():
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
generate_btn = gr.Button("Generate")
gr.Markdown("GLB Extraction Parameters:")
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
# Example images at the bottom of the page
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=lambda image: preprocess_image(image),
outputs=[image_prompt],
run_on_click=True,
examples_per_page=64,
)
model = gr.State()
# Handlers
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt],
)
generate_btn.click(
image_to_3d,
inputs=[image_prompt],
outputs=[model, video_output],
).then(
activate_button,
outputs=[extract_glb_btn],
)
video_output.clear(
deactivate_button,
outputs=[extract_glb_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[model, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
activate_button,
outputs=[download_glb],
)
model_output.clear(
deactivate_button,
outputs=[download_glb],
)
# Launch the Gradio app
if __name__ == "__main__":
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.cuda()
demo.launch()
|