Spaces:
Sleeping
Sleeping
File size: 4,651 Bytes
8ec2781 5c1410e 8ec2781 a948408 8ec2781 7ac9f20 8ec2781 7ac9f20 8ec2781 7ac9f20 57c5cf0 8ec2781 6237f6e 8ec2781 6237f6e 8ec2781 6237f6e 8ec2781 7ac9f20 57c5cf0 384fb80 14a1b3e 8ec2781 ddec797 2865e6a c47da58 ddec797 8ec2781 7ac9f20 8ec2781 7ac9f20 8ec2781 ddec797 8ec2781 a948408 8ec2781 57c5cf0 8ec2781 7ac9f20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import streamlit as st
from streamlit_chat import message
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import Replicate
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import TextLoader
from langchain.document_loaders import Docx2txtLoader
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
import os
import tempfile
# Initialize session state
def initialize_session_state():
if 'history' not in st.session_state:
st.session_state['history'] = []
if 'generated' not in st.session_state:
st.session_state['generated'] = ["Hello! Ask me about your file"]
if 'past' not in st.session_state:
st.session_state['past'] = ["Hey! 👋"]
# Conversation chat function
def conversation_chat(query, chain, history):
result = chain({"question": query, "chat_history": history})
history.append((query, result["answer"]))
return result["answer"]
# Display chat history
def display_chat_history(chain):
reply_container = st.container()
container = st.container()
with container:
with st.form(key='my_form', clear_on_submit=True):
user_input = st.text_input("Question:", placeholder="Ask about your Documents", key='input')
submit_button = st.form_submit_button(label='Send')
if submit_button and user_input:
with st.spinner('Generating response...'):
output = conversation_chat(user_input, chain, st.session_state['history'])
st.session_state['past'].append(user_input)
st.session_state['generated'].append(output)
if st.session_state['generated']:
with reply_container:
for i in range(len(st.session_state['generated'])):
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")
# Create conversational chain
def create_conversational_chain(vector_store):
replicate_api_token = "r8_MgTUrfPJIluDoXUhG7JXuPAYr6PonOW4BJCj0"
os.environ["REPLICATE_API_TOKEN"] = replicate_api_token
llm = Replicate(
streaming=True,
model="replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781",
callbacks=[StreamingStdOutCallbackHandler()],
input={"temperature": 0.01, "max_length": 500, "top_p": 1},
replicate_api_token=replicate_api_token
)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
memory=memory)
return chain
# Main function
def main():
initialize_session_state()
st.title("Chat With Your Doc")
st.sidebar.title("Document Processing")
uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True)
if uploaded_files:
text = []
for file in uploaded_files:
file_extension = os.path.splitext(file.name)[1]
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
temp_file.write(file.read())
temp_file_path = temp_file.name
loader = None
if file_extension == ".pdf":
loader = PyPDFLoader(temp_file_path)
elif file_extension == ".docx" or file_extension == ".doc":
loader = Docx2txtLoader(temp_file_path)
elif file_extension == ".txt":
loader = TextLoader(temp_file_path)
if loader:
text.extend(loader.load())
os.remove(temp_file_path)
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
text_chunks = text_splitter.split_documents(text)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={'device': 'cpu'})
vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)
chain = create_conversational_chain(vector_store)
display_chat_history(chain)
if __name__ == "__main__":
main()
|