Spaces:
Runtime error
Runtime error
JavierGon12
commited on
Commit
·
6433e18
1
Parent(s):
cd03817
Omit Text generatos cause it takes ages
Browse files- app.py +1 -1
- pages/Text Generation.py +22 -22
app.py
CHANGED
@@ -38,7 +38,7 @@ show_pages(
|
|
38 |
Page("pages/Text to Image.py", "Text to Image",":lower_left_paintbrush:"),
|
39 |
Page("pages/Text Classification.py",'Text Classification',":book:"),
|
40 |
Page("pages/Image to text.py","Image to Text",":camera:"),
|
41 |
-
Page("pages/Text Generation.py", "Text Generation", ":printer:"),
|
42 |
]
|
43 |
)
|
44 |
|
|
|
38 |
Page("pages/Text to Image.py", "Text to Image",":lower_left_paintbrush:"),
|
39 |
Page("pages/Text Classification.py",'Text Classification',":book:"),
|
40 |
Page("pages/Image to text.py","Image to Text",":camera:"),
|
41 |
+
#Page("pages/Text Generation.py", "Text Generation", ":printer:"),
|
42 |
]
|
43 |
)
|
44 |
|
pages/Text Generation.py
CHANGED
@@ -1,32 +1,32 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from PIL import Image
|
3 |
-
import base64
|
4 |
-
import transformers
|
5 |
|
6 |
|
7 |
|
8 |
-
model_name = 'Intel/neural-chat-7b-v3-1'
|
9 |
-
model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
-
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
-
def generate_response(system_input, user_input):
|
13 |
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
|
25 |
-
|
26 |
|
27 |
|
28 |
-
# Example usage
|
29 |
-
system_input = "You are a employee in the customer succes department of a company called Retraced that works in sustainability and traceability"
|
30 |
-
prompt = st.text_input(str("Insert here you prompt?"))
|
31 |
-
response = generate_response(system_input, prompt)
|
32 |
-
st.write(response)
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# from PIL import Image
|
3 |
+
# import base64
|
4 |
+
# import transformers
|
5 |
|
6 |
|
7 |
|
8 |
+
# model_name = 'Intel/neural-chat-7b-v3-1'
|
9 |
+
# model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
+
# tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
+
# def generate_response(system_input, user_input):
|
13 |
|
14 |
+
# # Format the input using the provided template
|
15 |
+
# prompt = f"### System:\n{system_input}\n### User:\n{user_input}\n### Assistant:\n"
|
16 |
|
17 |
+
# # Tokenize and encode the prompt
|
18 |
+
# inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False)
|
19 |
|
20 |
+
# # Generate a response
|
21 |
+
# outputs = model.generate(inputs, max_length=1000, num_return_sequences=1)
|
22 |
+
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
|
24 |
+
# # Extract only the assistant's response
|
25 |
+
# return response.split("### Assistant:\n")[-1]
|
26 |
|
27 |
|
28 |
+
# # Example usage
|
29 |
+
# system_input = "You are a employee in the customer succes department of a company called Retraced that works in sustainability and traceability"
|
30 |
+
# prompt = st.text_input(str("Insert here you prompt?"))
|
31 |
+
# response = generate_response(system_input, prompt)
|
32 |
+
# st.write(response)
|