Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
# Step 3: Define the summarization function for multiple models | |
summarizers = { | |
"BART (facebook/bart-large-cnn)": pipeline("summarization", model="facebook/bart-large-cnn"), | |
"T5 (t5-small)": pipeline("summarization", model="t5-small"), | |
"Pegasus (google/pegasus-xsum)": pipeline("summarization", model="google/pegasus-xsum"), | |
"DistilBART (sshleifer/distilbart-cnn-12-6)": pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") | |
} | |
def summarize(text, model_name): | |
summarizer = summarizers[model_name] | |
summary = summarizer(text, max_length=150, min_length=40, do_sample=False) | |
return summary[0]['summary_text'] | |
# Step 4: Create the Gradio interface | |
description = """ | |
Summarize text using various models from Hugging Face: | |
- BART (facebook/bart-large-cnn) | |
- T5 (t5-small) | |
- Pegasus (google/pegasus-xsum) | |
- DistilBART (sshleifer/distilbart-cnn-12-6) | |
""" | |
iface = gr.Interface( | |
fn=summarize, | |
inputs=[ | |
gr.Textbox(lines=10, label="Input Text"), | |
gr.Dropdown(choices=list(summarizers.keys()), label="Choose Model") | |
], | |
outputs="textbox", | |
title="Text Summarizer", | |
description=description | |
) | |
# Step 5: Launch the interface | |
iface.launch() | |