Spaces:
Running
on
Zero
Running
on
Zero
github-actions[bot]
commited on
Commit
·
039e024
0
Parent(s):
Sync to HuggingFace Spaces
Browse files- .gitattributes +35 -0
- .github/workflows/sync.yml +26 -0
- .gitignore +6 -0
- README.md +31 -0
- app.py +175 -0
- headers.yaml +9 -0
- requirements.txt +6 -0
- youtube.py +42 -0
- zero.py +45 -0
.gitattributes
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.github/workflows/sync.yml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Sync to Hugging Face Spaces
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
sync:
|
10 |
+
name: Sync
|
11 |
+
runs-on: ubuntu-latest
|
12 |
+
|
13 |
+
steps:
|
14 |
+
- name: Checkout Repository
|
15 |
+
uses: actions/checkout@v4
|
16 |
+
with:
|
17 |
+
lfs: true
|
18 |
+
|
19 |
+
- name: Sync to Hugging Face Spaces
|
20 |
+
uses: JacobLinCool/huggingface-sync@v1
|
21 |
+
with:
|
22 |
+
github: ${{ secrets.GITHUB_TOKEN }}
|
23 |
+
user: jacoblincool # Hugging Face username or organization name
|
24 |
+
space: vocal-separation # Hugging Face space name
|
25 |
+
token: ${{ secrets.HF_TOKEN }} # Hugging Face token
|
26 |
+
configuration: headers.yaml
|
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
|
3 |
+
*.wav
|
4 |
+
*.mp3
|
5 |
+
|
6 |
+
__pycache__/
|
README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Vocal Separation SOTA
|
3 |
+
emoji: 🎤
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.37.2
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
---
|
12 |
+
|
13 |
+
# Vocal Separation SOTA
|
14 |
+
|
15 |
+
[![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-lg-dark.svg)](https://huggingface.co/spaces/JacobLinCool/vocal-separation)
|
16 |
+
|
17 |
+
This is a demo for SOTA vocal separation models. Upload an audio file and the model will separate the vocals from the background music.
|
18 |
+
|
19 |
+
Based on the result of [MDX23](https://www.aicrowd.com/challenges/sound-demixing-challenge-2023/problems/music-demixing-track-mdx-23/leaderboards), the current SOTA model is [BS-RoFormer](https://arxiv.org/abs/2309.02612).
|
20 |
+
|
21 |
+
For comparison, you can also try the Mel-RoFormer model (a variant of BS-RoFormer) and the popular HTDemucs FT model.
|
22 |
+
|
23 |
+
## Models
|
24 |
+
|
25 |
+
- BS-RoFormer
|
26 |
+
- Mel-RoFormer
|
27 |
+
- HTDemucs FT
|
28 |
+
|
29 |
+
> The models are trained by the [UVR project](https://github.com/Anjok07/ultimatevocalremovergui).
|
30 |
+
|
31 |
+
> The code of this app is available on [GitHub](https://github.com/JacobLinCool/vocal-separation), any contributions should go there. Hugging Face Space is force pushed by GitHub Actions.
|
app.py
ADDED
@@ -0,0 +1,175 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Tuple
|
3 |
+
import gradio as gr
|
4 |
+
import tempfile
|
5 |
+
import numpy as np
|
6 |
+
import soundfile as sf
|
7 |
+
import librosa
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from audio_separator.separator import Separator
|
10 |
+
from zero import dynGPU
|
11 |
+
from youtube import youtube
|
12 |
+
|
13 |
+
|
14 |
+
separators = {
|
15 |
+
"BS-RoFormer": Separator(output_dir=tempfile.gettempdir(), output_format="mp3"),
|
16 |
+
"Mel-RoFormer": Separator(output_dir=tempfile.gettempdir(), output_format="mp3"),
|
17 |
+
"HTDemucs-FT": Separator(output_dir=tempfile.gettempdir(), output_format="mp3"),
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
def load():
|
22 |
+
separators["BS-RoFormer"].load_model("model_bs_roformer_ep_317_sdr_12.9755.ckpt")
|
23 |
+
separators["Mel-RoFormer"].load_model(
|
24 |
+
"model_mel_band_roformer_ep_3005_sdr_11.4360.ckpt"
|
25 |
+
)
|
26 |
+
separators["HTDemucs-FT"].load_model("htdemucs_ft.yaml")
|
27 |
+
|
28 |
+
|
29 |
+
# sometimes the network might be down, so we retry a few times
|
30 |
+
for _ in range(3):
|
31 |
+
try:
|
32 |
+
load()
|
33 |
+
break
|
34 |
+
except Exception as e:
|
35 |
+
print(e)
|
36 |
+
|
37 |
+
|
38 |
+
def merge(outs):
|
39 |
+
print(f"Merging {outs}")
|
40 |
+
bgm = np.sum(np.array([sf.read(out)[0] for out in outs]), axis=0)
|
41 |
+
print(f"Merged shape: {bgm.shape}")
|
42 |
+
tmp_file = os.path.join(tempfile.gettempdir(), f"{outs[0].split('/')[-1]}_merged")
|
43 |
+
sf.write(tmp_file + ".mp3", bgm, 44100)
|
44 |
+
return tmp_file + ".mp3"
|
45 |
+
|
46 |
+
|
47 |
+
def measure_duration(audio: str, model: str) -> int:
|
48 |
+
y, sr = librosa.load(audio, sr=44100)
|
49 |
+
return int(librosa.get_duration(y=y, sr=sr) / 3.0)
|
50 |
+
|
51 |
+
|
52 |
+
@dynGPU(duration=measure_duration)
|
53 |
+
def separate(audio: str, model: str) -> Tuple[str, str]:
|
54 |
+
separator = separators[model]
|
55 |
+
outs = separator.separate(audio)
|
56 |
+
outs = [os.path.join(tempfile.gettempdir(), out) for out in outs]
|
57 |
+
# roformers
|
58 |
+
if len(outs) == 2:
|
59 |
+
return outs[1], outs[0]
|
60 |
+
# demucs
|
61 |
+
if len(outs) == 4:
|
62 |
+
bgm = merge(outs[:3])
|
63 |
+
return outs[3], bgm
|
64 |
+
raise gr.Error("Unknown output format")
|
65 |
+
|
66 |
+
|
67 |
+
def from_youtube(url: str, model: str) -> Tuple[str, str, str]:
|
68 |
+
audio = youtube(url)
|
69 |
+
return audio, *separate(audio, model)
|
70 |
+
|
71 |
+
|
72 |
+
def plot_spectrogram(audio: str):
|
73 |
+
y, sr = librosa.load(audio, sr=44100)
|
74 |
+
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128)
|
75 |
+
S_dB = librosa.power_to_db(S, ref=np.max)
|
76 |
+
fig = plt.figure(figsize=(15, 5))
|
77 |
+
librosa.display.specshow(S_dB, sr=sr, x_axis="time", y_axis="mel")
|
78 |
+
plt.colorbar(format="%+2.0f dB")
|
79 |
+
plt.title("Mel-frequency spectrogram")
|
80 |
+
fig.tight_layout()
|
81 |
+
return fig
|
82 |
+
|
83 |
+
|
84 |
+
with gr.Blocks() as app:
|
85 |
+
with open(os.path.join(os.path.dirname(__file__), "README.md"), "r") as f:
|
86 |
+
README = f.read()
|
87 |
+
# remove yaml front matter
|
88 |
+
blocks = README.split("---")
|
89 |
+
if len(blocks) > 1:
|
90 |
+
README = "---".join(blocks[2:])
|
91 |
+
|
92 |
+
gr.Markdown(README)
|
93 |
+
|
94 |
+
with gr.Row():
|
95 |
+
with gr.Column():
|
96 |
+
gr.Markdown("## Upload an audio file")
|
97 |
+
audio = gr.Audio(label="Upload an audio file", type="filepath")
|
98 |
+
with gr.Column():
|
99 |
+
gr.Markdown(
|
100 |
+
"## or use a YouTube URL\n\nTry something on [The First Take](https://www.youtube.com/@The_FirstTake)?"
|
101 |
+
)
|
102 |
+
yt = gr.Textbox(
|
103 |
+
label="YouTube URL", placeholder="https://www.youtube.com/watch?v=..."
|
104 |
+
)
|
105 |
+
yt_btn = gr.Button("Use this YouTube URL")
|
106 |
+
|
107 |
+
with gr.Row():
|
108 |
+
model = gr.Radio(
|
109 |
+
label="Select a model",
|
110 |
+
choices=[s for s in separators.keys()],
|
111 |
+
value="BS-RoFormer",
|
112 |
+
)
|
113 |
+
btn = gr.Button("Separate", variant="primary")
|
114 |
+
|
115 |
+
with gr.Row():
|
116 |
+
with gr.Column():
|
117 |
+
vocals = gr.Audio(
|
118 |
+
label="Vocals", format="mp3", type="filepath", interactive=False
|
119 |
+
)
|
120 |
+
with gr.Column():
|
121 |
+
bgm = gr.Audio(
|
122 |
+
label="Background", format="mp3", type="filepath", interactive=False
|
123 |
+
)
|
124 |
+
|
125 |
+
with gr.Row():
|
126 |
+
with gr.Column():
|
127 |
+
vocal_spec = gr.Plot(label="Vocal spectrogram")
|
128 |
+
with gr.Column():
|
129 |
+
bgm_spec = gr.Plot(label="Background spectrogram")
|
130 |
+
|
131 |
+
gr.Examples(
|
132 |
+
examples=[
|
133 |
+
# I don't have any good examples, please contribute some!
|
134 |
+
# Suno's generated musix seems to have too many artifacts
|
135 |
+
],
|
136 |
+
inputs=[audio],
|
137 |
+
)
|
138 |
+
|
139 |
+
gr.Markdown(
|
140 |
+
"""
|
141 |
+
- BS-RoFormer: https://arxiv.org/abs/2309.02612
|
142 |
+
- Mel-RoFormer: https://arxiv.org/abs/2310.01809
|
143 |
+
"""
|
144 |
+
)
|
145 |
+
|
146 |
+
btn.click(
|
147 |
+
fn=separate,
|
148 |
+
inputs=[audio, model],
|
149 |
+
outputs=[vocals, bgm],
|
150 |
+
api_name="separate",
|
151 |
+
).success(
|
152 |
+
fn=plot_spectrogram,
|
153 |
+
inputs=[vocals],
|
154 |
+
outputs=[vocal_spec],
|
155 |
+
).success(
|
156 |
+
fn=plot_spectrogram,
|
157 |
+
inputs=[bgm],
|
158 |
+
outputs=[bgm_spec],
|
159 |
+
)
|
160 |
+
|
161 |
+
yt_btn.click(
|
162 |
+
fn=from_youtube,
|
163 |
+
inputs=[yt, model],
|
164 |
+
outputs=[audio, vocals, bgm],
|
165 |
+
).success(
|
166 |
+
fn=plot_spectrogram,
|
167 |
+
inputs=[vocals],
|
168 |
+
outputs=[vocal_spec],
|
169 |
+
).success(
|
170 |
+
fn=plot_spectrogram,
|
171 |
+
inputs=[bgm],
|
172 |
+
outputs=[bgm_spec],
|
173 |
+
)
|
174 |
+
|
175 |
+
app.launch(show_error=True)
|
headers.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
title: Vocal Separation SOTA
|
2 |
+
emoji: 🎤
|
3 |
+
colorFrom: red
|
4 |
+
colorTo: gray
|
5 |
+
sdk: gradio
|
6 |
+
sdk_version: 4.37.2
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
9 |
+
license: mit
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
audio-separator[gpu]; sys_platform != 'darwin'
|
3 |
+
audio-separator[cpu]; sys_platform == 'darwin'
|
4 |
+
yt_dlp
|
5 |
+
librosa
|
6 |
+
spaces
|
youtube.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from gradio_client import Client
|
4 |
+
import yt_dlp
|
5 |
+
import tempfile
|
6 |
+
import hashlib
|
7 |
+
import shutil
|
8 |
+
|
9 |
+
|
10 |
+
def youtube(url: str) -> str:
|
11 |
+
if not url:
|
12 |
+
raise gr.Error("Please input a YouTube URL")
|
13 |
+
|
14 |
+
hash = hashlib.md5(url.encode()).hexdigest()
|
15 |
+
tmp_file = os.path.join(tempfile.gettempdir(), f"{hash}")
|
16 |
+
|
17 |
+
try:
|
18 |
+
ydl_opts = {
|
19 |
+
"format": "bestaudio/best",
|
20 |
+
"outtmpl": tmp_file,
|
21 |
+
"postprocessors": [
|
22 |
+
{
|
23 |
+
"key": "FFmpegExtractAudio",
|
24 |
+
"preferredcodec": "mp3",
|
25 |
+
"preferredquality": "192",
|
26 |
+
}
|
27 |
+
],
|
28 |
+
}
|
29 |
+
|
30 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
31 |
+
ydl.download([url])
|
32 |
+
except Exception as e:
|
33 |
+
print(e)
|
34 |
+
try:
|
35 |
+
ytdl = Client("JacobLinCool/yt-dlp")
|
36 |
+
file = ytdl.predict(api_name="/download", url=url)
|
37 |
+
shutil.move(file, tmp_file + ".mp3")
|
38 |
+
except Exception as e:
|
39 |
+
print(e)
|
40 |
+
raise gr.Error(f"Failed to download YouTube audio from {url}")
|
41 |
+
|
42 |
+
return tmp_file + ".mp3"
|
zero.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable
|
2 |
+
from functools import partial
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
import spaces.config
|
6 |
+
from spaces.zero.decorator import P, R
|
7 |
+
|
8 |
+
|
9 |
+
def _dynGPU(
|
10 |
+
fn: Callable[P, R] | None, duration: Callable[P, int], min=30, max=300, step=10
|
11 |
+
) -> Callable[P, R]:
|
12 |
+
if not spaces.config.Config.zero_gpu:
|
13 |
+
return fn
|
14 |
+
|
15 |
+
funcs = [
|
16 |
+
(t, spaces.GPU(duration=t)(lambda *args, **kwargs: fn(*args, **kwargs)))
|
17 |
+
for t in range(min, max + 1, step)
|
18 |
+
]
|
19 |
+
|
20 |
+
def wrapper(*args, **kwargs):
|
21 |
+
requirement = duration(*args, **kwargs)
|
22 |
+
|
23 |
+
# find the function that satisfies the duration requirement
|
24 |
+
for t, func in funcs:
|
25 |
+
if t >= requirement:
|
26 |
+
gr.Info(f"Acquiring ZeroGPU for {t} seconds")
|
27 |
+
return func(*args, **kwargs)
|
28 |
+
|
29 |
+
# if no function is found, return the last one
|
30 |
+
gr.Info(f"Acquiring ZeroGPU for {funcs[-1][0]} seconds")
|
31 |
+
return funcs[-1][1](*args, **kwargs)
|
32 |
+
|
33 |
+
return wrapper
|
34 |
+
|
35 |
+
|
36 |
+
def dynGPU(
|
37 |
+
fn: Callable[P, R] | None = None,
|
38 |
+
duration: Callable[P, int] = lambda: 60,
|
39 |
+
min=30,
|
40 |
+
max=300,
|
41 |
+
step=10,
|
42 |
+
) -> Callable[P, R]:
|
43 |
+
if fn is None:
|
44 |
+
return partial(_dynGPU, duration=duration, min=min, max=max, step=step)
|
45 |
+
return _dynGPU(fn, duration, min, max, step)
|