Spaces:
Runtime error
Runtime error
JKJanosko
commited on
Add files via upload
Browse files- app.py +188 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
import torch
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
import pytorch_lightning as pl
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
from transformers import AutoModel, AdamW, get_cosine_schedule_with_warmup
|
9 |
+
import torch.nn as nn
|
10 |
+
import math
|
11 |
+
from torchmetrics.functional.classification import auroc
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import streamlit as st
|
14 |
+
from transformers import pipeline
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
class toxicity_dataset(Dataset):
|
19 |
+
def __init__(self,data_path,tokenizer,attributes,max_token_len= 128,sample = 1000):
|
20 |
+
self.data_path=data_path
|
21 |
+
self.tokenizer=tokenizer
|
22 |
+
self.attributes=attributes
|
23 |
+
self.max_token_len=max_token_len
|
24 |
+
self.sample=sample
|
25 |
+
self._prepare_data()
|
26 |
+
def _prepare_data(self):
|
27 |
+
data=pd.read_csv(self.data_path)
|
28 |
+
if self.sample is not None:
|
29 |
+
self.data=data.sample(self.sample,random_state=7)
|
30 |
+
else:
|
31 |
+
self.data=data
|
32 |
+
def __len__(self):
|
33 |
+
return(len(self.data))
|
34 |
+
def __getitem__(self,index):
|
35 |
+
item = self.data.iloc[index]
|
36 |
+
comment = str(item.comment_text)
|
37 |
+
attributes = torch.FloatTensor(item[self.attributes])
|
38 |
+
tokens = self.tokenizer.encode_plus(comment,add_special_tokens=True,return_tensors="pt",truncation=True,max_length=self.max_token_len,padding="max_length",return_attention_mask=True)
|
39 |
+
return{'input_ids':tokens.input_ids.flatten(),"attention_mask":tokens.attention_mask.flatten(),"labels":attributes}
|
40 |
+
|
41 |
+
class Toxcity_Data_Module(pl.LightningDataModule):
|
42 |
+
def __init__(self,train_path,test_path,attributes,batch_size = 16, max_token_len = 128, model_name="roberta-base"):
|
43 |
+
super().__init__()
|
44 |
+
self.train_path=train_path
|
45 |
+
self.test_path=test_path
|
46 |
+
self.attributes=attributes
|
47 |
+
self.batch_size=batch_size
|
48 |
+
self.max_token_len=max_token_len
|
49 |
+
self.model_name=model_name
|
50 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
51 |
+
def setup(self, stage = None):
|
52 |
+
if stage in (None, "fit"):
|
53 |
+
self.train_dataset=toxicity_dataset(self.train_path,self.tokenizer,self.attributes)
|
54 |
+
self.test_dataset=toxicity_dataset(self.test_path,self.tokenizer,self.attributes, sample=None)
|
55 |
+
if stage == "predict":
|
56 |
+
self.val_dataset=toxicity_dataset(self.test_path,self.tokenizer,self.attributes)
|
57 |
+
def train_dataloader(self):
|
58 |
+
return DataLoader(self.train_dataset,batch_size=self.batch_size,shuffle=True)
|
59 |
+
def val_dataloader(self):
|
60 |
+
return DataLoader(self.train_dataset,batch_size=self.batch_size,shuffle=False)
|
61 |
+
def predict_dataloader(self):
|
62 |
+
return DataLoader(self.test_dataset,batch_size=self.batch_size,shuffle=False)
|
63 |
+
|
64 |
+
class Toxic_Comment_Classifier(pl.LightningModule):
|
65 |
+
def __init__(self, config: dict):
|
66 |
+
super().__init__()
|
67 |
+
self.config = config
|
68 |
+
self.pretrained_model = AutoModel.from_pretrained(config['model_name'], return_dict = True)
|
69 |
+
self.hidden = torch.nn.Linear(self.pretrained_model.config.hidden_size, self.pretrained_model.config.hidden_size)
|
70 |
+
self.classifier = torch.nn.Linear(self.pretrained_model.config.hidden_size, self.config['n_labels'])
|
71 |
+
torch.nn.init.xavier_uniform_(self.classifier.weight)
|
72 |
+
self.loss_func = nn.BCEWithLogitsLoss(reduction='mean')
|
73 |
+
self.dropout = nn.Dropout()
|
74 |
+
|
75 |
+
def forward(self, input_ids, attention_mask=None, labels=None):
|
76 |
+
# roberta layer
|
77 |
+
output = self.pretrained_model(input_ids=input_ids, attention_mask=attention_mask)
|
78 |
+
pooled_output = torch.mean(output.last_hidden_state, 1)
|
79 |
+
# final logits
|
80 |
+
pooled_output = self.dropout(pooled_output)
|
81 |
+
pooled_output = self.hidden(pooled_output)
|
82 |
+
pooled_output = F.relu(pooled_output)
|
83 |
+
pooled_output = self.dropout(pooled_output)
|
84 |
+
logits = self.classifier(pooled_output)
|
85 |
+
# calculate loss
|
86 |
+
loss = 0
|
87 |
+
if labels is not None:
|
88 |
+
loss = self.loss_func(logits.view(-1, self.config['n_labels']), labels.view(-1, self.config['n_labels']))
|
89 |
+
return loss, logits
|
90 |
+
|
91 |
+
def training_step(self, batch, batch_index):
|
92 |
+
loss, outputs = self(**batch)
|
93 |
+
self.log("train loss ", loss, prog_bar = True, logger=True)
|
94 |
+
return {"loss":loss, "predictions":outputs, "labels": batch["labels"]}
|
95 |
+
|
96 |
+
def validation_step(self, batch, batch_index):
|
97 |
+
loss, outputs = self(**batch)
|
98 |
+
self.log("validation loss ", loss, prog_bar = True, logger=True)
|
99 |
+
return {"val_loss": loss, "predictions":outputs, "labels": batch["labels"]}
|
100 |
+
|
101 |
+
def predict_step(self, batch, batch_index):
|
102 |
+
loss, outputs = self(**batch)
|
103 |
+
return outputs
|
104 |
+
|
105 |
+
def configure_optimizers(self):
|
106 |
+
optimizer = AdamW(self.parameters(), lr=self.config['lr'], weight_decay=self.config['w_decay'])
|
107 |
+
total_steps = self.config['train_size']/self.config['bs']
|
108 |
+
warmup_steps = math.floor(total_steps * self.config['warmup'])
|
109 |
+
warmup_steps = math.floor(total_steps * self.config['warmup'])
|
110 |
+
scheduler = get_cosine_schedule_with_warmup(optimizer, warmup_steps, total_steps)
|
111 |
+
return [optimizer],[scheduler]
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
def predict_raw_comments(model, dm, trainer):
|
116 |
+
#print("debug1")
|
117 |
+
predictions = trainer.predict(model,dm)
|
118 |
+
#print("debug2")
|
119 |
+
flattened_predictions = np.stack([torch.sigmoid(torch.Tensor(p)) for batch in predictions for p in batch])
|
120 |
+
#print("debug3")
|
121 |
+
return flattened_predictions
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
def main():
|
126 |
+
# -- Creates Variables for Use of Model --
|
127 |
+
attributes=["toxic","severe_toxic","obscene","threat","insult","identity_hate"]
|
128 |
+
tokenizer=AutoTokenizer.from_pretrained("roberta-base")
|
129 |
+
toxic_comments_dataset=toxicity_dataset("data/train.csv",tokenizer,attributes)
|
130 |
+
|
131 |
+
toxicity_data_module=Toxcity_Data_Module("data/train.csv","data/test.csv",attributes)
|
132 |
+
toxicity_data_module.setup()
|
133 |
+
dataloader=toxicity_data_module.train_dataloader()
|
134 |
+
|
135 |
+
config = {
|
136 |
+
'model_name':"distilroberta-base",
|
137 |
+
'n_labels':len(attributes),
|
138 |
+
'bs':128,
|
139 |
+
'lr':1.5e-6,
|
140 |
+
'warmup':0.2,
|
141 |
+
"train_size":len(toxicity_data_module.train_dataloader()),
|
142 |
+
'w_decay':0.001,
|
143 |
+
'n_epochs':1
|
144 |
+
}
|
145 |
+
|
146 |
+
toxicity_data_module=Toxcity_Data_Module("data/train.csv","data/reduced_test.csv",attributes,batch_size=config['bs'])
|
147 |
+
toxicity_data_module.setup()
|
148 |
+
|
149 |
+
|
150 |
+
trainer = pl.Trainer(max_epochs=config['n_epochs'],num_sanity_val_steps=50)
|
151 |
+
|
152 |
+
## -- Creates Streamlit App --
|
153 |
+
st.title("Tweet Toxicity Classifier ")
|
154 |
+
st.header("Fine tuned model from roberta-base using PyTorch")
|
155 |
+
st.header("Jozef Janosko - CS 482, Milestone 3")
|
156 |
+
|
157 |
+
model_name = st.selectbox("Select Model...", ["Toxicity Classification Model"])
|
158 |
+
|
159 |
+
if st.button("Click to Load Data"):
|
160 |
+
if model_name=="Toxicity Classification Model":
|
161 |
+
model = torch.load("ToxicityClassificationModel.pt")
|
162 |
+
with st.spinner('Analyzing Text...'):
|
163 |
+
logits = predict_raw_comments(model,toxicity_data_module,trainer=trainer)
|
164 |
+
torch_logits = torch.from_numpy(logits)
|
165 |
+
probabilities = F.softmax(torch_logits, dim = -1).numpy()
|
166 |
+
inputs=pd.read_csv("data/reduced_test.csv")
|
167 |
+
data=[]
|
168 |
+
#print(inputs["comment_text"][0]," ",probabilities)
|
169 |
+
for i in range(len(probabilities)):
|
170 |
+
max_prob = 0
|
171 |
+
max_cat = 6
|
172 |
+
|
173 |
+
prob=0
|
174 |
+
for j in range(6):
|
175 |
+
prob=probabilities[i][j]
|
176 |
+
if(prob >= max_prob):
|
177 |
+
max_prob = prob
|
178 |
+
max_cat = j
|
179 |
+
#print(inputs["comment_text"][i]," ",attributes[max_cat]," ",max_prob," ",probabilities[i])
|
180 |
+
data.append([inputs["comment_text"][i][0:16]+"...",attributes[max_cat],max_prob])
|
181 |
+
results_df=pd.DataFrame(data,columns=["Comment Text","Most Likely Classification","Classification Probability"])
|
182 |
+
st.table(data=results_df)
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
|
187 |
+
if __name__ == '__main__' :
|
188 |
+
main()
|
requirements.txt
ADDED
Binary file (112 Bytes). View file
|
|