Spaces:
Running
Running
IsakNordgren
commited on
Commit
·
79b4e95
1
Parent(s):
92a715c
working locally
Browse files- .gitignore +1 -0
- __pycache__/summarize.cpython-310.pyc +0 -0
- app.py +11 -0
- requirements.txt +8 -0
- summarize.py +137 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.env
|
__pycache__/summarize.cpython-310.pyc
ADDED
Binary file (3.61 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
from summarize import Summarizer
|
4 |
+
|
5 |
+
def main():
|
6 |
+
st.title("Text Extractor and Summarizer")
|
7 |
+
|
8 |
+
summarizer = Summarizer()
|
9 |
+
summarizer.run_app()
|
10 |
+
|
11 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pdfplumber
|
3 |
+
pillow
|
4 |
+
pytesseract
|
5 |
+
transformers
|
6 |
+
torch
|
7 |
+
groq
|
8 |
+
python-dotenv
|
summarize.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pdfplumber
|
3 |
+
from PIL import Image
|
4 |
+
import pytesseract
|
5 |
+
#from transformers import pipeline
|
6 |
+
import io
|
7 |
+
|
8 |
+
import os
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
|
11 |
+
# groq
|
12 |
+
from groq import Groq
|
13 |
+
|
14 |
+
# SwedishBeagle-dare
|
15 |
+
from transformers import AutoTokenizer
|
16 |
+
import transformers
|
17 |
+
import torch
|
18 |
+
|
19 |
+
class Summarizer:
|
20 |
+
|
21 |
+
def __init__(self, model = "groq"):
|
22 |
+
self.model = model
|
23 |
+
self.client = self.load_groq()
|
24 |
+
|
25 |
+
def run_app(self):
|
26 |
+
uploaded_file = st.file_uploader("Upload an Image or PDF", type=["jpg", "jpeg", "png", "pdf"])
|
27 |
+
|
28 |
+
if uploaded_file is not None:
|
29 |
+
if uploaded_file.type == "application/pdf":
|
30 |
+
with st.spinner("Extracting text from PDF..."):
|
31 |
+
text = self.extract_text_from_pdf(uploaded_file)
|
32 |
+
else:
|
33 |
+
image = Image.open(uploaded_file)
|
34 |
+
with st.spinner("Extracting text from image..."):
|
35 |
+
text = self.extract_text_from_image(image)
|
36 |
+
|
37 |
+
if text:
|
38 |
+
with st.spinner("Summarizing text..."):
|
39 |
+
summary = self.summarize_using_groq(text)
|
40 |
+
st.subheader("Summary")
|
41 |
+
st.write(summary)
|
42 |
+
|
43 |
+
st.subheader("Extracted Text")
|
44 |
+
st.write(text)
|
45 |
+
|
46 |
+
|
47 |
+
# Function to extract text from an image
|
48 |
+
def extract_text_from_image(self, image):
|
49 |
+
text = pytesseract.image_to_string(image)
|
50 |
+
return text
|
51 |
+
|
52 |
+
# Function to extract text from a PDF
|
53 |
+
def extract_text_from_pdf(self, pdf):
|
54 |
+
text = ""
|
55 |
+
with pdfplumber.open(pdf) as pdf_file:
|
56 |
+
for page in pdf_file.pages:
|
57 |
+
text += page.extract_text()
|
58 |
+
return text
|
59 |
+
|
60 |
+
# Function to summarize text
|
61 |
+
#def summarize_text(self, text):
|
62 |
+
# summarizer = pipeline("summarization")
|
63 |
+
# summary = summarizer(text, max_length=150, min_length=30, do_sample=False)
|
64 |
+
# return summary[0]['summary_text']
|
65 |
+
|
66 |
+
def load_groq(self):
|
67 |
+
load_dotenv()
|
68 |
+
|
69 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
70 |
+
|
71 |
+
client = Groq(
|
72 |
+
api_key=GROQ_API_KEY
|
73 |
+
)
|
74 |
+
|
75 |
+
return client
|
76 |
+
|
77 |
+
def summarize_using_groq(self, text):
|
78 |
+
chat_completion = self.client.chat.completions.create(
|
79 |
+
messages=[
|
80 |
+
{
|
81 |
+
"role": "system",
|
82 |
+
"content": "You summarize texts that the users sends"
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"role": "user",
|
86 |
+
"content": text,
|
87 |
+
}
|
88 |
+
],
|
89 |
+
model="mixtral-8x7b-32768",
|
90 |
+
)
|
91 |
+
|
92 |
+
return chat_completion.choices[0].message.content
|
93 |
+
|
94 |
+
def summarize_using_swedishbeagle(self, text):
|
95 |
+
# https://huggingface.co/FredrikBL/SwedishBeagle-dare
|
96 |
+
|
97 |
+
model = "FredrikBL/SwedishBeagle-dare"
|
98 |
+
messages = [
|
99 |
+
{
|
100 |
+
"role": "system",
|
101 |
+
"content": "You summarize texts that the users sends"
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"role": "user",
|
105 |
+
"content": text
|
106 |
+
}
|
107 |
+
]
|
108 |
+
|
109 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
110 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
111 |
+
pipeline = transformers.pipeline(
|
112 |
+
"text-generation",
|
113 |
+
model=model,
|
114 |
+
torch_dtype=torch.float16,
|
115 |
+
device_map="auto",
|
116 |
+
)
|
117 |
+
|
118 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
119 |
+
return outputs[0]["generated_text"]
|
120 |
+
|
121 |
+
def summarize(self, text):
|
122 |
+
if(self.model == "groq"):
|
123 |
+
return self.summarize_using_groq(text)
|
124 |
+
elif(self.model == "SwedishBeagle-dare"):
|
125 |
+
return self.summarize_using_swedishbeagle(text)
|
126 |
+
|
127 |
+
|
128 |
+
# Streamlit app
|
129 |
+
def main():
|
130 |
+
# Models:
|
131 |
+
# - groq
|
132 |
+
# - SwedishBeagle-dare
|
133 |
+
summarizer = Summarizer(model="SwedishBeagle-dare")
|
134 |
+
summarizer.run_app()
|
135 |
+
|
136 |
+
if __name__ == "__main__":
|
137 |
+
main()
|