eduardo-alvarez commited on
Commit
0fbd2eb
·
1 Parent(s): 59a3f5e

updating chatbot

Browse files
Files changed (2) hide show
  1. app.py +3 -12
  2. requirements.txt +2 -0
app.py CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
2
  import pandas as pd
3
  import requests
4
  import os
5
- import time
6
 
7
  from info.train_a_model import (
8
  LLM_BENCHMARKS_TEXT)
@@ -51,7 +50,7 @@ with demo:
51
 
52
  #chat_model_selection = chat_model_dropdown.value
53
  chat_model_selection = 'Intel/neural-chat-7b-v1-1'
54
-
55
  def call_api_and_stream_response(query, chat_model):
56
  """
57
  Call the API endpoint and yield characters as they are received.
@@ -63,6 +62,7 @@ with demo:
63
  for chunk in r.iter_content(chunk_size=1):
64
  if chunk:
65
  yield chunk.decode()
 
66
  def get_response(query, history):
67
  """
68
  Wrapper function to call the streaming API and compile the response.
@@ -76,17 +76,8 @@ with demo:
76
  break
77
  response += char
78
  yield response
79
-
80
- def user(user_message, history):
81
- return "", history + [[user_message, None]]
82
-
83
- with gr.Blocks():
84
- chatbot = gr.Chatbot()
85
- msg = gr.Textbox()
86
- clear = gr.ClearButton([msg, chatbot])
87
 
88
- msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(get_response, chatbot, chatbot)
89
- clear.click(lambda: None, None, chatbot, queue=False)
90
 
91
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
92
  with gr.TabItem("🏆 LLM Leadeboard", elem_id="llm-benchmark-table", id=0):
 
2
  import pandas as pd
3
  import requests
4
  import os
 
5
 
6
  from info.train_a_model import (
7
  LLM_BENCHMARKS_TEXT)
 
50
 
51
  #chat_model_selection = chat_model_dropdown.value
52
  chat_model_selection = 'Intel/neural-chat-7b-v1-1'
53
+
54
  def call_api_and_stream_response(query, chat_model):
55
  """
56
  Call the API endpoint and yield characters as they are received.
 
62
  for chunk in r.iter_content(chunk_size=1):
63
  if chunk:
64
  yield chunk.decode()
65
+
66
  def get_response(query, history):
67
  """
68
  Wrapper function to call the streaming API and compile the response.
 
76
  break
77
  response += char
78
  yield response
 
 
 
 
 
 
 
 
79
 
80
+ gr.ChatInterface(get_response, retry_btn = None, undo_btn=None, concurrency_limit=inference_concurrency_limit).launch()
 
81
 
82
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
83
  with gr.TabItem("🏆 LLM Leadeboard", elem_id="llm-benchmark-table", id=0):
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ gradio==4.16.0
2
+ pandas==2.0.3