File size: 9,331 Bytes
5a5a36e 259a967 5a5a36e fa9f3ea 5a5a36e cf7af95 5a5a36e 49e6356 5a5a36e b10d6d4 5a5a36e cf7af95 5a5a36e 58fe595 5a5a36e ac138f8 5a5a36e fa9f3ea 715b290 fa9f3ea 2a6cc68 fa9f3ea 259a967 fa9f3ea f89f4fd fa9f3ea 5a5a36e 228e920 5a5a36e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import json
import os
from datetime import datetime, timezone
import time
from huggingface_hub import ModelCard, snapshot_download
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, DYNAMIC_INFO_PATH, DYNAMIC_INFO_FILE_PATH, DYNAMIC_INFO_REPO, H4_TOKEN, QUEUE_REPO, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA, REPO, GIT_REQUESTS_PATH, GIT_STATUS_PATH, GLOBAL_COND
from src.leaderboard.filter_models import DO_NOT_SUBMIT_MODELS
from src.submission.check_validity import (
already_submitted_models,
check_model_card,
get_model_size,
get_quantized_model_parameters_memory,
is_model_on_hub,
is_gguf_on_hub,
user_submission_permission,
get_model_tags
)
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
revision: str,
private: bool,
compute_dtype: str="float16",
precision: str="4bit",
weight_dtype: str="int4",
gguf_ftype: str="*Q4_0.gguf",
):
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(GIT_STATUS_PATH)
quant_type = None
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
# Is the user rate limited?
if user_name != "":
user_can_submit, error_msg = user_submission_permission(
user_name, USERS_TO_SUBMISSION_DATES, RATE_LIMIT_PERIOD, RATE_LIMIT_QUOTA
)
if not user_can_submit:
return styled_error(error_msg)
# Did the model authors forbid its submission to the leaderboard?
if model in DO_NOT_SUBMIT_MODELS:
return styled_warning("Model authors have requested that their model be not submitted on the leaderboard.")
# Does the model actually exist?
if revision == "":
revision = "main"
architecture = "?"
downloads = 0
created_at = ""
gguf_on_hub, error, gguf_files, new_gguf_ftype = is_gguf_on_hub(repo_id=model, filename=gguf_ftype)
if new_gguf_ftype is not None:
gguf_ftype = new_gguf_ftype
model_on_hub, error, model_config = is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
# Is the model on the hub?
if (not model_on_hub or model_config is None) and (not gguf_on_hub or gguf_files is None):
return styled_error(f'Model "{model}" {error}')
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
downloads = getattr(model_config, 'downloads', 0)
created_at = getattr(model_config, 'created_at', '')
quantization_config = getattr(model_config, 'quantization_config', None)
if gguf_files is not None:
architectures = ""
downloads = 0
created_at = ""
quantization_config = None
quant_type = "llama.cpp"
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision=revision)
except Exception:
return styled_error("Could not get your model information. Please fill it up properly.")
# Were the model card and license filled?
try:
if model_info.cardData is None:
license = "unknown"
else:
license = model_info.cardData.get("license", "unknown")
except Exception:
return styled_error("Please select a license for your model")
modelcard_OK, error_msg, model_card = check_model_card(model)
# maybe don't have model card
"""
if not modelcard_OK:
return styled_error(error_msg)
"""
tags = get_model_tags(model_card, model)
# Seems good, creating the eval
print("Adding new eval")
script = "ITREX"
hardware = "cpu"
precision = "4bit"
if quantization_config is not None:
quant_method = quantization_config.get("quant_method", None)
if "bnb_4bit_quant_type" in quantization_config:
quant_method = "bitsandbytes"
quant_type = "bitsandbytes"
hardware = "gpu"
if quantization_config.get("load_in_4bit", True):
precision = "4bit"
if quantization_config.get("load_in_8bit", True):
precision = "8bit"
if quant_method == "gptq":
hardware = "cpu"
quant_type = "GPTQ"
precision = f"{quantization_config.get('bits', '4bit')}bit"
if quant_method == "awq":
hardware = "gpu"
quant_type = "AWQ"
precision = f"{quantization_config.get('bits', '4bit')}bit"
if quant_method == "aqlm":
hardware = "gpu"
quant_type = "AQLM"
nbits_per_codebook = quantization_config.get('nbits_per_codebook')
num_codebooks = quantization_config.get('num_codebooks')
in_group_size = quantization_config.get('in_group_size')
bits = int(nbits_per_codebook * num_codebooks / in_group_size)
precision = f"{bits}bit"
if precision == "4bit":
weight_dtype = "int4"
elif precision == "3bit":
weight_dtype = "int3"
elif precision == "2bit":
weight_dtype = "int2"
if quant_type is None or quant_type == "":
return styled_error("Please select a quantization model like GPTQ, AWQ etc.")
model_params, model_size = get_quantized_model_parameters_memory(model_info,
quant_method=quant_type.lower(),
bits=precision)
if quant_type == "llama.cpp":
hardware = "cpu"
script = "llama_cpp"
tags = "llama.cpp"
else:
hardware = "gpu"
eval_entry = {
"model": model,
"revision": revision,
"private": private,
"params": model_size,
"architectures": architecture,
"quant_type": quant_type,
"precision": precision,
"model_params": model_params,
"model_size": model_size,
"precision": precision,
"weight_dtype": weight_dtype,
"compute_dtype": compute_dtype,
"gguf_ftype": gguf_ftype,
"hardware": hardware,
"status": "Pending",
"submitted_time": current_time,
"model_type": "quantization",
"job_id": -1,
"job_start_time": None,
"scripts": script
}
supplementary_info = {
"likes": model_info.likes,
"license": license,
"still_on_hub": True,
"tags": tags,
"downloads": downloads,
"created_at": created_at
}
print(eval_entry)
# ToDo: need open
# Check for duplicate submission
if f"{model}_{revision}_{quant_type}_{precision}_{weight_dtype}_{compute_dtype}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
print("Creating huggingface/dataset eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{quant_type}_{precision}_{weight_dtype}_{compute_dtype}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
print("Creating git eval file")
OUT_DIR = f"{GIT_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
req_out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{quant_type}_{precision}_{weight_dtype}_{compute_dtype}.json"
req_git_path = "/".join(req_out_path.split('/')[1:])
print("Creating status file")
OUT_DIR = f"{GIT_STATUS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
sta_out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{quant_type}_{precision}_{weight_dtype}_{compute_dtype}.json"
sta_git_path = "/".join(sta_out_path.split('/')[1:])
print("Uploading eval file")
try:
print("git-push get lock..............")
GLOBAL_COND.acquire()
branch = REPO.active_branch.name
REPO.remotes.origin.pull(branch)
REPO.index.remove("requests", False, r=True)
with open(req_out_path, "w") as f:
f.write(json.dumps(eval_entry, indent=4))
with open(sta_out_path, "w") as f:
f.write(json.dumps(eval_entry, indent=4))
REPO.index.add([req_git_path, sta_git_path])
commit = REPO.index.commit(f"Add {model} to eval requests/status.")
REPO.remotes.origin.push(branch)
time.sleep(10)
print("git-push release lock..............")
GLOBAL_COND.release()
except Exception as e:
print(str(e))
print("git-push error........")
GLOBAL_COND.release()
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to 3 hours for the model to show in the PENDING list."
)
|