File size: 15,152 Bytes
5a5a36e 95b7a71 5a5a36e 95b7a71 b9cb207 5a5a36e 95b7a71 5a5a36e b9cb207 5a5a36e b9cb207 5a5a36e 3f45e26 5a5a36e 3f45e26 5a5a36e b9cb207 5a5a36e b9cb207 5a5a36e 08847a4 5a5a36e 08847a4 5a5a36e 08847a4 5a5a36e 08847a4 5a5a36e 08847a4 5a5a36e 08847a4 5a5a36e 08847a4 5a5a36e 08847a4 5a5a36e b10d6d4 5a5a36e 08847a4 c3c6a41 5a5a36e 359bb98 5a5a36e b10d6d4 5a5a36e 359bb98 5a5a36e b8e5d23 5a5a36e b8e5d23 b10d6d4 b8e5d23 5a5a36e 653f44e 5a5a36e 6dd427b 5a5a36e b10d6d4 6dd427b 5a5a36e 6dd427b 653f44e 5a5a36e b8e5d23 3f45e26 5a5a36e b8e5d23 5a5a36e b8e5d23 5a5a36e b9cb207 b8e5d23 b9cb207 228e920 b9cb207 228e920 b9cb207 5a5a36e b10d6d4 5a5a36e 653f44e 5a5a36e b10d6d4 5a5a36e 653f44e 5a5a36e c3c6a41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
@dataclass
class Task:
benchmark: str
metric: str
col_name: str
class Tasks(Enum):
arc = Task("arc:challenge", "acc,none", "ARC-c")
arc_easy = Task("arc:easy", "acc,none", "ARC-e")
boolq = Task("boolq", "acc,none", "Boolq")
hellaswag = Task("hellaswag", "acc,none", "HellaSwag")
lambada_openai = Task("lambada:openai", "acc,none", "Lambada")
mmlu = Task("mmlu", "acc,none", "MMLU")
openbookqa = Task("openbookqa", "acc,none", "Openbookqa")
piqa = Task("piqa", "acc,none", "Piqa")
# truthfulqa:mc1 / truthfulqa:mc2 -- ?
truthfulqa_mc = Task("truthfulqa:mc1", "acc,none", "Truthfulqa")
# arc:challenge ?
# arc_challenge = Task("arc:challenge", "acc_norm,none", "Arc challenge")
# truthfulqa = Task("truthfulqa:mc", "mc2", "TruthfulQA")
winogrande = Task("winogrande", "acc,none", "Winogrande")
# gsm8k = Task("gsm8k", "acc", "GSM8K")
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
dummy: bool = False
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average β¬οΈ", "number", True)])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", True)])
auto_eval_column_dict.append(["model_size", ColumnContent, ColumnContent("#Size (G)", "number", True)])
# Dummy column for the search bar (hidden by the custom CSS)
auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, hidden=True)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["quant_type", ColumnContent, ColumnContent("Quant type", "str", False)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["weight_dtype", ColumnContent, ColumnContent("Weight dtype", "str", False)])
auto_eval_column_dict.append(["compute_dtype", ColumnContent, ColumnContent("Compute dtype", "str", False)])
auto_eval_column_dict.append(["merged", ColumnContent, ColumnContent("Merged", "bool", False, hidden=True)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub β€οΈ", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
auto_eval_column_dict.append(["flagged", ColumnContent, ColumnContent("Flagged", "bool", False, hidden=True)])
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent("MoE", "bool", False, hidden=True)])
auto_eval_column_dict.append(["double_quant", ColumnContent, ColumnContent("Double Quant", "bool", False)])
auto_eval_column_dict.append(["group_size", ColumnContent, ColumnContent("Group Size", "bool", False)])
# We use make dataclass to dynamically fill the scores from Tasks
# auto_eval_column_dict.sort(key=lambda x: x[0])
sorted_columns = sorted(auto_eval_column_dict[3:], key=lambda x: x[0])
sorted_auto_eval_column_dict = auto_eval_column_dict[:3] + sorted_columns
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
baseline_row = {
AutoEvalColumn.model.name: "<p>Baseline</p>",
AutoEvalColumn.revision.name: "N/A",
AutoEvalColumn.precision.name: None,
AutoEvalColumn.merged.name: False,
AutoEvalColumn.average.name: 31.0,
AutoEvalColumn.arc.name: 25.0,
# AutoEvalColumn.hellaswag.name: 25.0,
# AutoEvalColumn.truthfulqa.name: 25.0,
AutoEvalColumn.winogrande.name: 50.0,
# AutoEvalColumn.gsm8k.name: 0.21,
AutoEvalColumn.dummy.name: "baseline",
AutoEvalColumn.model_type.name: "",
AutoEvalColumn.flagged.name: False,
# low-bite new params
AutoEvalColumn.mmlu.name: 25.0,
AutoEvalColumn.lambada_openai.name: 25.0,
AutoEvalColumn.hellaswag.name: 25.0,
AutoEvalColumn.piqa.name: 25.0,
AutoEvalColumn.truthfulqa_mc.name: 25.0,
AutoEvalColumn.openbookqa.name: 25.0,
AutoEvalColumn.boolq.name: True,
AutoEvalColumn.arc_easy.name: 25.0,
AutoEvalColumn.double_quant.name: False,
}
# Average β¬οΈ human baseline is 0.897 (source: averaging human baselines below)
# ARC human baseline is 0.80 (source: https://lab42.global/arc/)
# HellaSwag human baseline is 0.95 (source: https://deepgram.com/learn/hellaswag-llm-benchmark-guide)
# MMLU human baseline is 0.898 (source: https://openreview.net/forum?id=d7KBjmI3GmQ)
# TruthfulQA human baseline is 0.94(source: https://arxiv.org/pdf/2109.07958.pdf)
# Winogrande: https://leaderboard.allenai.org/winogrande/submissions/public
# GSM8K: paper
# Define the human baselines
human_baseline_row = {
AutoEvalColumn.model.name: "<p>Human performance</p>",
AutoEvalColumn.revision.name: "N/A",
AutoEvalColumn.precision.name: None,
AutoEvalColumn.average.name: 92.75,
AutoEvalColumn.merged.name: False,
AutoEvalColumn.arc.name: 80.0,
# AutoEvalColumn.hellaswag.name: 95.0,
# AutoEvalColumn.mmlu.name: 89.8,
# AutoEvalColumn.truthfulqa.name: 94.0,
AutoEvalColumn.winogrande.name: 94.0,
# AutoEvalColumn.gsm8k.name: 100,
AutoEvalColumn.dummy.name: "human_baseline",
AutoEvalColumn.model_type.name: "",
AutoEvalColumn.flagged.name: False,
}
@dataclass
class ModelDetails:
name: str
symbol: str = "" # emoji, only for the model type
"""
class ModelType(Enum):
PT = ModelDetails(name="GPTQ", symbol="π’")
CPT = ModelDetails(name="AWQ", symbol="π©")
FT = ModelDetails(name="llama.cpp", symbol="π·")
chat = ModelDetails(name="Bisandbytes", symbol="π΅")
merges = ModelDetails(name="AutoRound", symbol="π")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "π·" in type:
return ModelType.FT
if "continously pretrained" in type or "π©" in type:
return ModelType.CPT
if "pretrained" in type or "π’" in type:
return ModelType.PT
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "π¦", "β", "π΅"]]):
return ModelType.chat
if "merge" in type or "π" in type:
return ModelType.merges
return ModelType.Unknown
"""
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="π’")
CPT = ModelDetails(name="continuously pretrained", symbol="π©")
FT = ModelDetails(name="fine-tuned on domain-specific datasets", symbol="π·")
chat = ModelDetails(name="chat models (RLHF, DPO, IFT, ...)", symbol="π΅")
merges = ModelDetails(name="base merges and moerges", symbol="π")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "π·" in type:
return ModelType.FT
if "continously pretrained" in type or "π©" in type:
return ModelType.CPT
if "pretrained" in type or "π’" in type or "quantization" in type:
return ModelType.PT
if any([k in type for k in ["instruction-tuned", "RL-tuned", "chat", "π¦", "β", "π΅"]]):
return ModelType.chat
if "merge" in type or "π" in type:
return ModelType.merges
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class QuantType(Enum):
gptq = ModelDetails(name="GPTQ", symbol="π’")
aqlm = ModelDetails(name="AQLM", symbol="β")
awq = ModelDetails(name="AWQ", symbol="π©")
llama_cpp = ModelDetails(name="llama.cpp", symbol="π·")
bnb = ModelDetails(name="bitsandbytes", symbol="π΅")
autoround = ModelDetails(name="AutoRound", symbol="π")
Unknown = ModelDetails(name="?", symbol="?")
QuantType_None = ModelDetails(name="None", symbol="β")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
def from_str(quant_dtype):
if quant_dtype in ["GPTQ"]:
return QuantType.gptq
if quant_dtype in ["AQLM"]:
return QuantType.aqlm
if quant_dtype in ["AWQ"]:
return QuantType.awq
if quant_dtype in ["llama.cpp"]:
return QuantType.llama_cpp
if quant_dtype in ["bitsandbytes"]:
return QuantType.bnb
if quant_dtype in ["AutoRound"]:
return QuantType.autoround
if quant_dtype in ["None"]:
return QuantType.QuantType_None
return QuantType.Unknown
class WeightDtype(Enum):
all = ModelDetails("All")
int2 = ModelDetails("int2")
int3 = ModelDetails("int3")
int4 = ModelDetails("int4")
nf4 = ModelDetails("nf4")
fp4 = ModelDetails("fp4")
fp16 = ModelDetails("float16")
bf16 = ModelDetails("bfloat16")
fp32 = ModelDetails("float32")
Unknown = ModelDetails("?")
def from_str(weight_dtype):
if weight_dtype in ["int2"]:
return WeightDtype.int2
if weight_dtype in ["int3"]:
return WeightDtype.int3
if weight_dtype in ["int4"]:
return WeightDtype.int4
if weight_dtype in ["nf4"]:
return WeightDtype.nf4
if weight_dtype in ["fp4"]:
return WeightDtype.fp4
if weight_dtype in ["All"]:
return WeightDtype.all
if weight_dtype in ["float16"]:
return WeightDtype.fp16
if weight_dtype in ["bfloat16"]:
return WeightDtype.bf16
if weight_dtype in ["float32"]:
return WeightDtype.fp32
return WeightDtype.Unknown
class ComputeDtype(Enum):
all = ModelDetails("All")
fp16 = ModelDetails("float16")
bf16 = ModelDetails("bfloat16")
int8 = ModelDetails("int8")
fp32 = ModelDetails("float32")
Unknown = ModelDetails("?")
def from_str(compute_dtype):
if compute_dtype in ["bfloat16"]:
return ComputeDtype.bf16
if compute_dtype in ["float16"]:
return ComputeDtype.fp16
if compute_dtype in ["int8"]:
return ComputeDtype.int8
if compute_dtype in ["float32"]:
return ComputeDtype.fp32
if compute_dtype in ["All"]:
return ComputeDtype.all
return ComputeDtype.Unknown
class GroupDtype(Enum):
group_1 = ModelDetails("-1")
group_1024 = ModelDetails("1024")
group_256 = ModelDetails("256")
group_128 = ModelDetails("128")
group_64 = ModelDetails("64")
group_32 = ModelDetails("32")
group_all = ModelDetails("All")
def from_str(compute_dtype):
if compute_dtype in ["-1"]:
return GroupDtype.group_1
if compute_dtype in ["1024"]:
return GroupDtype.group_1024
if compute_dtype in ["256"]:
return GroupDtype.group_256
if compute_dtype in ["128"]:
return GroupDtype.group_128
if compute_dtype in ["64"]:
return GroupDtype.group_64
if compute_dtype in ["32"]:
return GroupDtype.group_32
return GroupDtype.group_all
class Precision(Enum):
# float16 = ModelDetails("float16")
# bfloat16 = ModelDetails("bfloat16")
qt_2bit = ModelDetails("2bit")
qt_3bit = ModelDetails("3bit")
qt_4bit = ModelDetails("4bit")
qt_8bit = ModelDetails("8bit")
qt_16bit = ModelDetails("16bit")
qt_32bit = ModelDetails("32bit")
Unknown = ModelDetails("?")
def from_str(precision):
# if precision in ["torch.float16", "float16"]:
# return Precision.float16
# if precision in ["torch.bfloat16", "bfloat16"]:
# return Precision.bfloat16
if precision in ["2bit"]:
return Precision.qt_2bit
if precision in ["3bit"]:
return Precision.qt_3bit
if precision in ["4bit"]:
return Precision.qt_4bit
if precision in ["8bit"]:
return Precision.qt_8bit
if precision in ["16bit"]:
return Precision.qt_16bit
if precision in ["32bit"]:
return Precision.qt_32bit
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1.5": pd.Interval(0, 2, closed="right"),
"~3": pd.Interval(2, 4, closed="right"),
"~7": pd.Interval(4, 9, closed="right"),
"~13": pd.Interval(9, 20, closed="right"),
# "~35": pd.Interval(20, 45, closed="right"),
# "~60": pd.Interval(45, 70, closed="right"),
# "70+": pd.Interval(70, 10000, closed="right"),
}
NUMERIC_MODELSIZE = {
"?": pd.Interval(-1, 0, closed="right"),
"~4": pd.Interval(0, 4, closed="right"),
"~8": pd.Interval(4, 8, closed="right"),
"~16": pd.Interval(8, 16, closed="right"),
"~36": pd.Interval(16, 36, closed="right"),
}
|