tybrs commited on
Commit
60307cd
·
verified ·
1 Parent(s): c430c1e

Update bias_auc.py

Browse files
Files changed (1) hide show
  1. bias_auc.py +2 -10
bias_auc.py CHANGED
@@ -9,12 +9,9 @@ _DESCRIPTION = """\
9
  Suite of threshold-agnostic metrics that provide a nuanced view
10
  of this unintended bias, by considering the various ways that a
11
  classifier’s score distribution can vary across designated groups.
12
-
13
  The following are computed:
14
-
15
  - BNSP (Background Negative, Subgroup Positive); and
16
  - BPSN (Background Positive, Subgroup Negative) AUC
17
-
18
  """
19
 
20
  _CITATION = """\
@@ -28,18 +25,14 @@ _CITATION = """\
28
  """
29
 
30
  _KWARGS_DESCRIPTION = """\
31
-
32
  Args:
33
  target list[list[str]]: list containing list of group targeted for each item
34
  label list[int]: list containing label index for each item
35
  output list[list[float]]: list of model output values for each
36
-
37
  Returns (for each subgroup in target):
38
  'Subgroup' : Subgroup AUC score,
39
  'BPSN' : BPSN (Background Positive, Subgroup Negative) AUC,
40
  'BNSP' : BNSP (Background Negative, Subgroup Positive) AUC score,
41
-
42
-
43
  Example:
44
  >>> from evaluate import load
45
 
@@ -54,7 +47,6 @@ Example:
54
  ... [0.4341845214366913, 0.5658154487609863],
55
  ... [0.400595098733902, 0.5994048714637756],
56
  ... [0.3840397894382477, 0.6159601807594299]]
57
-
58
  >>> metric = load('Intel/bias_auc')
59
  >>> metric.add_batch(target=target,
60
  label=label,
@@ -68,7 +60,7 @@ Example:
68
 
69
  class BiasAUC(evaluate.Metric):
70
  def _info(self):
71
- return datasets.MetricInfo(
72
  description=_DESCRIPTION,
73
  citation=_CITATION,
74
  inputs_description=_KWARGS_DESCRIPTION,
@@ -165,4 +157,4 @@ class BiasAUC(evaluate.Metric):
165
  for subgroup in subgroups}
166
  result = self._update_overall(result, label, output)
167
  return result
168
-
 
9
  Suite of threshold-agnostic metrics that provide a nuanced view
10
  of this unintended bias, by considering the various ways that a
11
  classifier’s score distribution can vary across designated groups.
 
12
  The following are computed:
 
13
  - BNSP (Background Negative, Subgroup Positive); and
14
  - BPSN (Background Positive, Subgroup Negative) AUC
 
15
  """
16
 
17
  _CITATION = """\
 
25
  """
26
 
27
  _KWARGS_DESCRIPTION = """\
 
28
  Args:
29
  target list[list[str]]: list containing list of group targeted for each item
30
  label list[int]: list containing label index for each item
31
  output list[list[float]]: list of model output values for each
 
32
  Returns (for each subgroup in target):
33
  'Subgroup' : Subgroup AUC score,
34
  'BPSN' : BPSN (Background Positive, Subgroup Negative) AUC,
35
  'BNSP' : BNSP (Background Negative, Subgroup Positive) AUC score,
 
 
36
  Example:
37
  >>> from evaluate import load
38
 
 
47
  ... [0.4341845214366913, 0.5658154487609863],
48
  ... [0.400595098733902, 0.5994048714637756],
49
  ... [0.3840397894382477, 0.6159601807594299]]
 
50
  >>> metric = load('Intel/bias_auc')
51
  >>> metric.add_batch(target=target,
52
  label=label,
 
60
 
61
  class BiasAUC(evaluate.Metric):
62
  def _info(self):
63
+ return evaluate.MetricInfo(
64
  description=_DESCRIPTION,
65
  citation=_CITATION,
66
  inputs_description=_KWARGS_DESCRIPTION,
 
157
  for subgroup in subgroups}
158
  result = self._update_overall(result, label, output)
159
  return result
160
+