import gradio as gr import os import requests import json import base64 from io import BytesIO from huggingface_hub import login from PIL import Image # myip = os.environ["0.0.0.0"] # myport = os.environ["80"] myip = "34.219.98.113" myport=8000 is_spaces = True if "SPACE_ID" in os.environ else False is_shared_ui = False from css_html_js import custom_css from about import ( CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, EVALUATION_QUEUE_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE, ) def process_image_from_binary(img_stream): if img_stream is None: print("no image binary") return image_data = base64.b64decode(img_stream) image_bytes = BytesIO(image_data) img = Image.open(image_bytes) return img def execute_prepare(diffusion_model_id, concept, steps, attack_id): print(f"my IP is {myip}, my port is {myport}") print(f"my input is diffusion_model_id: {diffusion_model_id}, concept: {concept}, steps: {steps}") response = requests.post('http://{}:{}/prepare'.format(myip, myport), json={"diffusion_model_id": diffusion_model_id, "concept": concept, "steps": steps, "attack_id": attack_id}, timeout=(10, 1200)) print(f"result: {response}") # result = result.text[1:-1] prompt = "" img = None if response.status_code == 200: response_json = response.json() print(response_json) prompt = response_json['input_prompt'] img = process_image_from_binary(response_json['no_attack_img']) else: print(f"Request failed with status code {response.status_code}") return prompt, img def execute_udiff(diffusion_model_id, concept, steps, attack_id): print(f"my IP is {myip}, my port is {myport}") print(f"my input is diffusion_model_id: {diffusion_model_id}, concept: {concept}, steps: {steps}") response = requests.post('http://{}:{}/udiff'.format(myip, myport), json={"diffusion_model_id": diffusion_model_id, "concept": concept, "steps": steps, "attack_id": attack_id}, timeout=(10, 1200)) print(f"result: {response}") # result = result.text[1:-1] prompt = "" img = None if response.status_code == 200: response_json = response.json() print(response_json) prompt = response_json['output_prompt'] img = process_image_from_binary(response_json['attack_img']) else: print(f"Request failed with status code {response.status_code}") return prompt, img css = ''' .instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important} .arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important} #component-4, #component-3, #component-10{min-height: 0} .duplicate-button img{margin: 0} #img_1, #img_2, #img_3, #img_4{height:15rem} #mdStyle{font-size: 0.7rem} #titleCenter {text-align:center} ''' with gr.Blocks(css=custom_css) as demo: gr.HTML(TITLE) gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") # gr.Markdown("# Demo of UnlearnDiffAtk.") # gr.Markdown("### UnlearnDiffAtk is an effective and efficient adversarial prompt generation approach for unlearned diffusion models(DMs).") # # gr.Markdown("####For more details, please visit the [project](https://www.optml-group.com/posts/mu_attack), # # check the [code](https://github.com/OPTML-Group/Diffusion-MU-Attack), and read the [paper](https://arxiv.org/abs/2310.11868).") # gr.Markdown("### Please notice that the process may take a long time, but the results will be saved. You can try it later if it waits for too long.") with gr.Row() as udiff: with gr.Row(): drop = gr.Dropdown(["Object-Church", "Object-Parachute", "Object-Garbage_Truck","Style-VanGogh", "Nudity"], label="Unlearning undesirable concepts") with gr.Column(): # gr.Markdown("Please upload your model id.") drop_model = gr.Dropdown(["ESD", "FMN", "SPM"], label="Unlearned DMs") # diffusion_model_T = gr.Textbox(label='diffusion_model_id') # concept = gr.Textbox(label='concept') # attacker = gr.Textbox(label='attacker') # start_button = gr.Button("Attack!") with gr.Column(): atk_idx = gr.Textbox(label="attack index") with gr.Column(): shown_columns_step = gr.Slider( 0, 100, value=40, step=1, label="Attack Steps", info="Choose between 0 and 100", interactive=True,) with gr.Row() as attack: with gr.Column(min_width=512): start_button = gr.Button("Attack prepare!",size='lg') text_input = gr.Textbox(label="Input Prompt") orig_img = gr.Image(label="Image Gnerated by Unlearned DM using input prompt",width=512,show_share_button=False,show_download_button=False) with gr.Column(): attack_button = gr.Button("UnlearnDiffAtk!",size='lg') text_ouput = gr.Textbox(label="Adversarial Prompt Genetated by UnlearnDiffAtk") result_img = gr.Image(label="Image Gnerated by Unlearned DM using adversarial prompt",width=512,show_share_button=False,show_download_button=False) start_button.click(fn=execute_prepare, inputs=[drop_model, drop, shown_columns_step, atk_idx], outputs=[text_input, orig_img], api_name="prepare") attack_button.click(fn=execute_udiff, inputs=[drop_model, drop, shown_columns_step, atk_idx], outputs=[text_ouput, result_img], api_name="udiff") demo.queue().launch(server_name='0.0.0.0')