// Copyright (c) Meta Platforms, Inc. and affiliates. // All rights reserved. // This source code is licensed under the license found in the // LICENSE file in the root directory of this source tree. // Convert the onnx model mask prediction to ImageData function arrayToImageData(input: any, width: number, height: number) { const [r, g, b, a] = [0, 114, 189, 255]; // the masks's blue color const arr = new Uint8ClampedArray(4 * width * height).fill(0); for (let i = 0; i < input.length; i++) { // Threshold the onnx model mask prediction at 0.0 // This is equivalent to thresholding the mask using predictor.model.mask_threshold // in python if (input[i] > 0.0) { arr[4 * i + 0] = r; arr[4 * i + 1] = g; arr[4 * i + 2] = b; arr[4 * i + 3] = a; } } return new ImageData(arr, height, width); } // Use a Canvas element to produce an image from ImageData function imageDataToImage(imageData: ImageData) { const canvas = imageDataToCanvas(imageData); const image = new Image(); image.src = canvas.toDataURL(); return image; } // Canvas elements can be created from ImageData function imageDataToCanvas(imageData: ImageData) { const canvas = document.createElement("canvas"); const ctx = canvas.getContext("2d"); canvas.width = imageData.width; canvas.height = imageData.height; ctx?.putImageData(imageData, 0, 0); return canvas; } // Convert the onnx model mask output to an HTMLImageElement export function onnxMaskToImage(input: any, width: number, height: number) { return imageDataToImage(arrayToImageData(input, width, height)); }