Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
with gr.Blocks() as demo: | |
tolerance = gr.Slider(label="Tolerance", | |
info="How different colors can be in a segment.", | |
minimum=0, maximum=256 * 3, value=50) | |
with gr.Row(): | |
input_img = gr.Image(label="Input") | |
output_img = gr.Image(label="Selected Segment") | |
def get_select_coords(img, tolerance, evt: gr.SelectData): | |
visited_pixels = set() | |
pixels_in_queue = set() | |
pixels_in_segment = set() | |
start_pixel = img[evt.index[1], evt.index[0]] | |
pixels_in_queue.add((evt.index[1], evt.index[0])) | |
while len(pixels_in_queue) > 0: | |
pixel = pixels_in_queue.pop() | |
visited_pixels.add(pixel) | |
neighbors = [] | |
if pixel[0] > 0: | |
neighbors.append((pixel[0] - 1, pixel[1])) | |
if pixel[0] < img.shape[0] - 1: | |
neighbors.append((pixel[0] + 1, pixel[1])) | |
if pixel[1] > 0: | |
neighbors.append((pixel[0], pixel[1] - 1)) | |
if pixel[1] < img.shape[1] - 1: | |
neighbors.append((pixel[0], pixel[1] + 1)) | |
for neighbor in neighbors: | |
if neighbor in visited_pixels: | |
continue | |
neighbor_pixel = img[neighbor[0], neighbor[1]] | |
if np.abs(neighbor_pixel - start_pixel).sum() < tolerance: | |
pixels_in_queue.add(neighbor) | |
pixels_in_segment.add(neighbor) | |
out = img.copy() * 0.2 | |
out = out.astype(np.uint8) | |
for pixel in pixels_in_segment: | |
out[pixel[0], pixel[1]] = img[pixel[0], pixel[1]] | |
return out | |
input_img.select(get_select_coords, [input_img, tolerance], output_img) | |
if __name__ == "__main__": | |
demo.launch() |