aya_expanse / app.py
shivi's picture
add app setup file
ec60ae9 verified
raw
history blame
18.5 kB
from __future__ import annotations
import os
import io
import re
import time
import uuid
import torch
import cohere
import secrets
import requests
import fasttext
import replicate
import numpy as np
import gradio as gr
from PIL import Image
from groq import Groq
from TTS.api import TTS
from elevenlabs import save
from gradio.themes.base import Base
from elevenlabs.client import ElevenLabs
from huggingface_hub import hf_hub_download
from gradio.themes.utils import colors, fonts, sizes
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from prompt_examples import TEXT_CHAT_EXAMPLES, IMG_GEN_PROMPT_EXAMPLES, AUDIO_EXAMPLES, TEXT_CHAT_EXAMPLES_LABELS, IMG_GEN_PROMPT_EXAMPLES_LABELS, AUDIO_EXAMPLES_LABELS
from preambles import CHAT_PREAMBLE, AUDIO_RESPONSE_PREAMBLE, IMG_DESCRIPTION_PREAMBLE
from constants import LID_LANGUAGES, NEETS_AI_LANGID_MAP, AYA_MODEL_NAME, BATCH_SIZE, USE_ELVENLABS, USE_REPLICATE
HF_API_TOKEN = os.getenv("HF_API_KEY")
ELEVEN_LABS_KEY = os.getenv("ELEVEN_LABS_KEY")
NEETS_AI_API_KEY = os.getenv("NEETS_AI_API_KEY")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
IMG_COHERE_API_KEY = os.getenv("IMG_COHERE_API_KEY")
AUDIO_COHERE_API_KEY = os.getenv("AUDIO_COHERE_API_KEY")
CHAT_COHERE_API_KEY = os.getenv("CHAT_COHERE_API_KEY")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize cohere clients
img_prompt_client = cohere.Client(
api_key=IMG_COHERE_API_KEY,
client_name="c4ai-aya-expanse-img"
)
chat_client = cohere.Client(
api_key=CHAT_COHERE_API_KEY,
client_name="c4ai-aya-expanse-chat"
)
audio_response_client = cohere.Client(
api_key=AUDIO_COHERE_API_KEY,
client_name="c4ai-aya-expanse-audio"
)
# Initialize the Groq client
groq_client = Groq(api_key=GROQ_API_KEY)
# Initialize the ElevenLabs client
eleven_labs_client = ElevenLabs(
api_key=ELEVEN_LABS_KEY,
)
# Language identification
lid_model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
LID_model = fasttext.load_model(lid_model_path)
def predict_language(text):
text = re.sub("\n", " ", text)
label, logit = LID_model.predict(text)
label = label[0][len("__label__") :]
print("predicted language:", label)
return label
# Image Generation util functions
def get_hf_inference_api_response(payload, model_id):
headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
MODEL_API_URL = f"/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2F%3Cspan class="hljs-subst">{model_id}"
response = requests.post(MODEL_API_URL, headers=headers, json=payload)
return response.content
def replicate_api_inference(input_prompt):
input_params={
"prompt": input_prompt,
"go_fast": True,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "jpg",
"output_quality": 80,
"num_inference_steps": 4
}
image = replicate.run("black-forest-labs/flux-schnell",input=input_params)
image = Image.open(image[0])
return image
def generate_image(input_prompt, model_id="black-forest-labs/FLUX.1-schnell"):
if input_prompt!="":
if input_prompt=='Image generation blocked for prompts that include humans, kids, or children.':
return None
else:
if USE_REPLICATE:
print("using replicate for image generation")
image = replicate_api_inference(input_prompt)
else:
try:
print("using HF inference API for image generation")
image_bytes = get_hf_inference_api_response({ "inputs": input_prompt}, model_id)
image = np.array(Image.open(io.BytesIO(image_bytes)))
except Exception as e:
print("HF API error:", e)
# generate image with help replicate in case of error
image = replicate_api_inference(input_prompt)
return image
else:
return None
def generate_img_prompt(input_prompt):
# clean prompt before doing language detection
cleaned_prompt = clean_text(input_prompt, remove_bullets=True, remove_newline=True)
text_lang_code = predict_language(cleaned_prompt)
language = LID_LANGUAGES[text_lang_code]
gr.Info("Generating Image", duration=2)
if language!="english":
text = f"""
Translate the given input prompt to English.
Input Prompt: {input_prompt}
Once translated, use the English version of the prompt to create a detailed image description suitable for a text-to-image model.
Ensure the description is concise, limited to 2-3 lines, and integrates key elements from the translated prompt.
Add the prompt English translation to the image description, and respond with that.
"""
else:
text = f"""Generate a detailed image description which can be used to generate an image using a text-to-image model based on the given input prompt:
Input Prompt: {input_prompt}
Do not use more than 3-4 lines for the description.
"""
response = img_prompt_client.chat(message=text, preamble=IMG_DESCRIPTION_PREAMBLE, model=AYA_MODEL_NAME)
output = response.text
return output
# Chat with Aya util functions
def trigger_example(example):
chat, updated_history = generate_aya_chat_response(example)
return chat, updated_history
def generate_aya_chat_response(user_message, cid, token, history=None):
if not token:
raise gr.Error("Error loading.")
if history is None:
history = []
if cid == "" or None:
cid = str(uuid.uuid4())
print(f"cid: {cid} prompt:{user_message}")
history.append(user_message)
stream = chat_client.chat_stream(message=user_message, preamble=CHAT_PREAMBLE, conversation_id=cid, model=AYA_MODEL_NAME, connectors=[], temperature=0.3)
output = ""
for idx, response in enumerate(stream):
if response.event_type == "text-generation":
output += response.text
if idx == 0:
history.append(" " + output)
else:
history[-1] = output
chat = [
(history[i].strip(), history[i + 1].strip())
for i in range(0, len(history) - 1, 2)
]
yield chat, history, cid
return chat, history, cid
def clear_chat():
return [], [], str(uuid.uuid4())
# Audio Pipeline util functions
def transcribe_and_stream(inputs, show_info="no", model_name="openai/whisper-large-v3-turbo", language="english"):
if inputs is not None and inputs!="":
if show_info=="show_info":
gr.Info("Processing Audio", duration=1)
if model_name != "groq_whisper":
print("DEVICE:", DEVICE)
pipe = pipeline(
task="automatic-speech-recognition",
model=model_name,
chunk_length_s=30,
DEVICE=DEVICE)
text = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps=True)["text"]
else:
text = groq_whisper_tts(inputs)
# stream text output
for i in range(len(text)):
time.sleep(0.01)
yield text[: i + 10]
else:
return ""
def aya_speech_text_response(text):
if text is not None and text!="":
stream = audio_response_client.chat_stream(message=text,preamble=AUDIO_RESPONSE_PREAMBLE, model=AYA_MODEL_NAME)
output = ""
for event in stream:
if event:
if event.event_type == "text-generation":
output+=event.text
cleaned_output = clean_text(output)
yield cleaned_output
else:
return ""
def clean_text(text, remove_bullets=False, remove_newline=False):
# Remove bold formatting
cleaned_text = re.sub(r"\*\*", "", text)
if remove_bullets:
cleaned_text = re.sub(r"^- ", "", cleaned_text, flags=re.MULTILINE)
if remove_newline:
cleaned_text = re.sub(r"\n", " ", cleaned_text)
return cleaned_text
def convert_text_to_speech(text, language="english"):
# do language detection to determine voice of speech response
if text is not None and text!="":
# clean text before doing language detection
cleaned_text = clean_text(text, remove_bullets=True, remove_newline=True)
text_lang_code = predict_language(cleaned_text)
language = LID_LANGUAGES[text_lang_code]
if not USE_ELVENLABS:
if language!= "japanese":
audio_path = neetsai_tts(text, language)
else:
print("DEVICE:", DEVICE)
# if language is japanese then use XTTS for TTS since neets_ai doesn't support japanese voice
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(DEVICE)
speaker_wav="samples/ja-sample.wav"
lang_code="ja"
audio_path = "./output.wav"
tts.tts_to_file(text=text, speaker_wav=speaker_wav, language=lang_code, file_path=audio_path)
else:
# use elevenlabs for TTS
audio_path = elevenlabs_generate_audio(text)
return audio_path
else:
return None
def elevenlabs_generate_audio(text):
audio = eleven_labs_client.generate(
text=text,
voice="River",
model="eleven_turbo_v2_5", #"eleven_multilingual_v2"
)
# save audio
audio_path = "./audio.mp3"
save(audio, audio_path)
return audio_path
def neetsai_tts(input_text, language):
lang_id = NEETS_AI_LANGID_MAP[language]
neets_vits_voice_id = f"vits-{lang_id}"
response = requests.request(
method="POST",
url="https://api.neets.ai/v1/tts",
headers={
"Content-Type": "application/json",
"X-API-Key": NEETS_AI_API_KEY
},
json={
"text": input_text,
"voice_id": neets_vits_voice_id,
"params": {
"model": "vits"
}
}
)
# save audio file
audio_path = "neets_demo.mp3"
with open(audio_path, "wb") as f:
f.write(response.content)
return audio_path
def groq_whisper_tts(filename):
with open(filename, "rb") as file:
transcriptions = groq_client.audio.transcriptions.create(
file=(filename, file.read()),
model="whisper-large-v3-turbo",
response_format="json",
temperature=0.0
)
print("transcribed text:", transcriptions.text)
print("********************************")
return transcriptions.text
# setup gradio app theme
theme = gr.themes.Base(
primary_hue=gr.themes.colors.teal,
secondary_hue=gr.themes.colors.blue,
neutral_hue=gr.themes.colors.gray,
text_size=gr.themes.sizes.text_lg,
).set(
# Primary Button Color
button_primary_background_fill="#114A56",
button_primary_background_fill_hover="#114A56",
# Block Labels
block_title_text_weight="600",
block_label_text_weight="600",
block_label_text_size="*text_md",
)
demo = gr.Blocks(theme=theme, analytics_enabled=False)
with demo:
with gr.Row(variant="panel"):
with gr.Column(scale=1):
gr.Image("aya-expanse.png", elem_id="logo-img", show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False)
with gr.Column(scale=30):
gr.Markdown("""C4AI Aya Expanse is a state-of-art model with highly advanced capabilities to connect the world across languages.
<br/>
You can use this space to chat, speak and visualize with Aya Expanse in 23 languages.
**Developed by**: [Cohere for AI](https://cohere.com/research) and [Cohere](https://cohere.com/)
"""
)
# Text Chat
with gr.TabItem("Chat with Aya") as chat_with_aya:
cid = gr.State("")
token = gr.State(value=None)
with gr.Column():
with gr.Row():
chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, height=300)
with gr.Row():
user_message = gr.Textbox(lines=1, placeholder="Ask anything in our 23 languages ...", label="Input", show_label=False)
with gr.Row():
submit_button = gr.Button("Submit",variant="primary")
clear_button = gr.Button("Clear")
history = gr.State([])
user_message.submit(fn=generate_aya_chat_response, inputs=[user_message, cid, token, history], outputs=[chatbot, history, cid], concurrency_limit=32)
submit_button.click(fn=generate_aya_chat_response, inputs=[user_message, cid, token, history], outputs=[chatbot, history, cid], concurrency_limit=32)
clear_button.click(fn=clear_chat, inputs=None, outputs=[chatbot, history, cid], concurrency_limit=32)
user_message.submit(lambda x: gr.update(value=""), None, [user_message], queue=False)
submit_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
clear_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
with gr.Row():
gr.Examples(
examples=TEXT_CHAT_EXAMPLES,
inputs=user_message,
cache_examples=False,
fn=trigger_example,
outputs=[chatbot],
examples_per_page=25,
label="Load example prompt for:",
example_labels=TEXT_CHAT_EXAMPLES_LABELS,
)
# Audio Pipeline
with gr.TabItem("Speak with Aya") as speak_with_aya:
with gr.Row():
with gr.Column():
e2e_audio_file = gr.Audio(sources="microphone", type="filepath", min_length=None)
clear_button_microphone = gr.ClearButton()
gr.Examples(
examples=AUDIO_EXAMPLES,
inputs=e2e_audio_file,
cache_examples=False,
examples_per_page=25,
label="Load example audio for:",
example_labels=AUDIO_EXAMPLES_LABELS,
)
with gr.Column():
e2e_audio_file_trans = gr.Textbox(lines=3,label="Your Input", autoscroll=False, show_copy_button=True, interactive=False)
e2e_audio_file_aya_response = gr.Textbox(lines=3,label="Aya's Response", show_copy_button=True, container=True, interactive=False)
e2e_aya_audio_response = gr.Audio(type="filepath", label="Aya's Audio Response")
show_info = gr.Textbox(value="show_info", visible=False)
stt_model = gr.Textbox(value="groq_whisper", visible=False)
with gr.Accordion("See Details", open=False):
gr.Markdown("To enable voice interaction with Aya Expanse, this space uses [Whisper large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) and [Groq](https://groq.com/) for STT and [neets.ai](http://neets.ai/) for TTS.")
# Image Generation
with gr.TabItem("Visualize with Aya") as visualize_with_aya:
with gr.Row():
with gr.Column():
input_img_prompt = gr.Textbox(placeholder="Ask anything in our 23 languages ...", label="Describe an image", lines=3)
# generated_img_desc = gr.Textbox(label="Image Description generated by Aya", interactive=False, lines=3, visible=False)
submit_button_img = gr.Button(value="Submit", variant="primary")
clear_button_img = gr.ClearButton()
with gr.Column():
generated_img = gr.Image(label="Generated Image", interactive=False)
with gr.Row():
gr.Examples(
examples=IMG_GEN_PROMPT_EXAMPLES,
inputs=input_img_prompt,
cache_examples=False,
examples_per_page=25,
label="Load example prompt for:",
example_labels=IMG_GEN_PROMPT_EXAMPLES_LABELS
)
generated_img_desc = gr.Textbox(label="Image Description generated by Aya", interactive=False, lines=3, visible=False)
# increase spacing between examples and Accordion components
with gr.Row():
pass
with gr.Row():
pass
with gr.Row():
pass
with gr.Row():
with gr.Accordion("See Details", open=False):
gr.Markdown("This space uses Aya Expanse for translating multilingual prompts and generating detailed image descriptions and [Flux Schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) for Image Generation.")
# Image Generation
clear_button_img.click(lambda: None, None, input_img_prompt)
clear_button_img.click(lambda: None, None, generated_img_desc)
clear_button_img.click(lambda: None, None, generated_img)
submit_button_img.click(
generate_img_prompt,
inputs=[input_img_prompt],
outputs=[generated_img_desc],
)
generated_img_desc.change(
generate_image, #run_flux,
inputs=[generated_img_desc],
outputs=[generated_img],
show_progress="hidden",
)
# Audio Pipeline
clear_button_microphone.click(lambda: None, None, e2e_audio_file)
clear_button_microphone.click(lambda: None, None, e2e_audio_file_trans)
clear_button_microphone.click(lambda: None, None, e2e_aya_audio_response)
e2e_audio_file.change(
transcribe_and_stream,
inputs=[e2e_audio_file, show_info, stt_model],
outputs=[e2e_audio_file_trans],
show_progress="hidden",
).then(
aya_speech_text_response,
inputs=[e2e_audio_file_trans],
outputs=[e2e_audio_file_aya_response],
show_progress="minimal",
).then(
convert_text_to_speech,
inputs=[e2e_audio_file_aya_response],
outputs=[e2e_aya_audio_response],
show_progress="minimal",
)
demo.load(lambda: secrets.token_hex(16), None, token)
demo.queue(api_open=False, max_size=40).launch(show_api=False, allowed_paths=['/home/user/app'])