File size: 18,902 Bytes
ec60ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27baa1
ec60ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a4920f
 
ec60ae9
 
 
 
 
 
 
c27baa1
 
 
 
ec60ae9
c27baa1
 
 
 
 
 
 
ec60ae9
c27baa1
ec60ae9
 
 
 
c27baa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec60ae9
c27baa1
ec60ae9
c27baa1
ec60ae9
 
 
 
 
 
 
 
 
 
c27baa1
 
ec60ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27baa1
ec60ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27baa1
 
ec60ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27baa1
 
 
 
 
 
 
ec60ae9
c27baa1
 
ec60ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27baa1
ec60ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27baa1
ec60ae9
 
 
 
 
c27baa1
ec60ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27baa1
 
ec60ae9
 
 
 
 
c27baa1
ec60ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c27baa1
ec60ae9
 
 
 
 
c27baa1
 
ec60ae9
c27baa1
 
ec60ae9
c27baa1
ec60ae9
c27baa1
ec60ae9
 
 
 
c27baa1
ec60ae9
 
 
 
c27baa1
ec60ae9
 
 
 
c27baa1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
from __future__ import annotations
import os
import io
import re
import time
import uuid
import torch
import cohere
import secrets
import requests
import fasttext
import replicate
import numpy as np
import gradio as gr
from PIL import Image
from groq import Groq
from TTS.api import TTS
from elevenlabs import save
from gradio.themes.base import Base
from elevenlabs.client import ElevenLabs
from huggingface_hub import hf_hub_download
from gradio.themes.utils import colors, fonts, sizes
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
from prompt_examples import TEXT_CHAT_EXAMPLES, IMG_GEN_PROMPT_EXAMPLES, AUDIO_EXAMPLES, TEXT_CHAT_EXAMPLES_LABELS, IMG_GEN_PROMPT_EXAMPLES_LABELS, AUDIO_EXAMPLES_LABELS
from preambles import CHAT_PREAMBLE, AUDIO_RESPONSE_PREAMBLE, IMG_DESCRIPTION_PREAMBLE
from constants import LID_LANGUAGES, NEETS_AI_LANGID_MAP, AYA_MODEL_NAME, BATCH_SIZE, USE_ELVENLABS, USE_REPLICATE


HF_API_TOKEN =  os.getenv("HF_API_KEY")
ELEVEN_LABS_KEY = os.getenv("ELEVEN_LABS_KEY")
NEETS_AI_API_KEY = os.getenv("NEETS_AI_API_KEY")
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
IMG_COHERE_API_KEY = os.getenv("IMG_COHERE_API_KEY")
AUDIO_COHERE_API_KEY = os.getenv("AUDIO_COHERE_API_KEY")
CHAT_COHERE_API_KEY = os.getenv("CHAT_COHERE_API_KEY")

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize cohere clients
img_prompt_client = cohere.Client(
    api_key=IMG_COHERE_API_KEY,
    client_name="c4ai-aya-expanse-img"
)
chat_client = cohere.Client(
    api_key=CHAT_COHERE_API_KEY,
    client_name="c4ai-aya-expanse-chat"
)
audio_response_client = cohere.Client(
    api_key=AUDIO_COHERE_API_KEY,
    client_name="c4ai-aya-expanse-audio"
)

# Initialize the Groq client
groq_client = Groq(api_key=GROQ_API_KEY)

# Initialize the ElevenLabs client
eleven_labs_client = ElevenLabs(
  api_key=ELEVEN_LABS_KEY, 
)

# Language identification 
lid_model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
LID_model = fasttext.load_model(lid_model_path)

def predict_language(text):
    text = re.sub("\n", " ", text)
    label, logit = LID_model.predict(text)
    label = label[0][len("__label__") :]
    print("predicted language:", label)
    return label

# Image Generation util functions
def get_hf_inference_api_response(payload, model_id):
    headers = {"Authorization": f"Bearer {HF_API_TOKEN}"}
    MODEL_API_URL = f"/static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2F%3Cspan class="hljs-subst">{model_id}"
    response = requests.post(MODEL_API_URL, headers=headers, json=payload)
    return response.content

def replicate_api_inference(input_prompt):
    input_params={
        "prompt": input_prompt,
        "go_fast": True,
        "megapixels": "1",
        "num_outputs": 1,
        "aspect_ratio": "1:1",
        "output_format": "jpg",
        "output_quality": 80,
        "enable_safety_checker": True,
        "safety_tolerance": 1,
        "num_inference_steps": 4
    }
    image = replicate.run("black-forest-labs/flux-schnell",input=input_params)
    image = Image.open(image[0])
    return image

def generate_image(input_prompt, model_id="black-forest-labs/FLUX.1-schnell"):
    if input_prompt is not None and input_prompt!="":
        if USE_REPLICATE:
            print("using replicate for image generation")
            image = replicate_api_inference(input_prompt)
        else:
            try:
                print("using HF inference API for image generation")
                image_bytes = get_hf_inference_api_response({ "inputs": input_prompt}, model_id)
                image = np.array(Image.open(io.BytesIO(image_bytes)))
            except Exception as e:
                print("HF API error:", e)
                # generate image with help replicate in case of error
                image = replicate_api_inference(input_prompt)
        return image
    else:
        return None

def generate_img_prompt(input_prompt):
    if input_prompt is not None and input_prompt!="":
        # clean prompt before doing language detection
        cleaned_prompt = clean_text(input_prompt, remove_bullets=True, remove_newline=True)
        text_lang_code = predict_language(cleaned_prompt)
        
        gr.Info("Generating Image", duration=2)
        
        if text_lang_code!="eng_Latn":
            text = f"""
            Translate the given input prompt to English.
            Input Prompt: {input_prompt}
            Then based on the English translation of the prompt, generate a detailed image description which can be used to generate an image using a text-to-image model.
            Do not use more than 3-4 lines for the image description. Respond with only the image description.
            """
        else:
            text = f"""Generate a detailed image description which can be used to generate an image using a text-to-image model based on the given input prompt:
            Input Prompt: {input_prompt}
            Do not use more than 3-4 lines for the description.
            """
        
        response = img_prompt_client.chat(message=text, preamble=IMG_DESCRIPTION_PREAMBLE, model=AYA_MODEL_NAME)
        output = response.text
    
        return output
    else:
        return None


# Chat with Aya util functions

def trigger_example(example):
    chat, updated_history = generate_aya_chat_response(example)
    return chat, updated_history
        
def generate_aya_chat_response(user_message, cid, token, history=None):
    if not token:
        print("no token")
        #raise gr.Error("Error loading.")
        
    if history is None:
        history = []
    if cid == "" or None:    
        cid = str(uuid.uuid4())

    print(f"cid: {cid} prompt:{user_message}")
    
    history.append(user_message)
    
    stream = chat_client.chat_stream(message=user_message,  preamble=CHAT_PREAMBLE, conversation_id=cid, model=AYA_MODEL_NAME, connectors=[], temperature=0.3)
    output = ""
    
    for idx, response in enumerate(stream):
        if response.event_type == "text-generation":
            output += response.text
        if idx == 0:
            history.append(" " + output)
        else:
            history[-1] = output
        chat = [
            (history[i].strip(), history[i + 1].strip())
            for i in range(0, len(history) - 1, 2)
        ] 
        yield chat, history, cid
        
    return chat, history, cid
    

def clear_chat():
    return [], [], str(uuid.uuid4())

# Audio Pipeline util functions

def transcribe_and_stream(inputs, model_name="groq_whisper", show_info="show_info", language="english"):
    if inputs is not None and inputs!="":
        if show_info=="show_info":
            gr.Info("Processing Audio", duration=1)
        if model_name != "groq_whisper":
            print("DEVICE:", DEVICE)
            pipe = pipeline(
            task="automatic-speech-recognition",
            model=model_name,
            chunk_length_s=30,
            DEVICE=DEVICE) 
            text = pipe(inputs, batch_size=BATCH_SIZE, return_timestamps=True)["text"] 
        else:
            text = groq_whisper_tts(inputs)
        
        # stream text output
        for i in range(len(text)):
            time.sleep(0.01)
            yield text[: i + 10]
    else:
        return ""


def aya_speech_text_response(text):
    if text is not None and text!="":
        stream = audio_response_client.chat_stream(message=text,preamble=AUDIO_RESPONSE_PREAMBLE, model=AYA_MODEL_NAME)
        output = ""

        for event in stream:
            if event:
                if event.event_type == "text-generation":
                    output+=event.text
                    cleaned_output = clean_text(output)
                    yield cleaned_output
    else:
        return ""

def clean_text(text, remove_bullets=False, remove_newline=False):
    # Remove bold formatting
    cleaned_text = re.sub(r"\*\*", "", text)

    if remove_bullets:
        cleaned_text = re.sub(r"^- ", "", cleaned_text, flags=re.MULTILINE)

    if remove_newline:
        cleaned_text = re.sub(r"\n", " ", cleaned_text)

    return cleaned_text

def convert_text_to_speech(text, language="english"):
    
    # do language detection to determine voice of speech response
    if text is not None and text!="":
        # clean text before doing language detection
        cleaned_text = clean_text(text, remove_bullets=True, remove_newline=True)
        text_lang_code = predict_language(cleaned_text)

        if not USE_ELVENLABS:
            if text_lang_code!= "jpn_Jpan":
                audio_path = neetsai_tts(text, text_lang_code)
            else:
                print("DEVICE:", DEVICE)
                # if language is japanese then use XTTS for TTS since neets_ai doesn't support japanese voice
                tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(DEVICE)
                speaker_wav="samples/ja-sample.wav"
                lang_code="ja"
                audio_path = "./output.wav"
                tts.tts_to_file(text=text, speaker_wav=speaker_wav, language=lang_code, file_path=audio_path)
        else:
            # use elevenlabs for TTS 
            audio_path = elevenlabs_generate_audio(text)
            
        return audio_path
    else:
        return None

def elevenlabs_generate_audio(text):
    audio = eleven_labs_client.generate(
        text=text,
        voice="River",
        model="eleven_turbo_v2_5", #"eleven_multilingual_v2"
        )
    # save audio 
    audio_path = "./audio.mp3"
    save(audio, audio_path)
    return audio_path

def neetsai_tts(input_text, text_lang_code):

    if text_lang_code in LID_LANGUAGES.keys():
        language = LID_LANGUAGES[text_lang_code]
    else:
        # use english voice as default for languages outside 23 languages of Aya Expanse
        language = "english"

    neets_lang_id = NEETS_AI_LANGID_MAP[language]
    neets_vits_voice_id = f"vits-{neets_lang_id}"
    
    response = requests.request(
    method="POST",
    url="https://api.neets.ai/v1/tts",
    headers={
        "Content-Type": "application/json",
        "X-API-Key": NEETS_AI_API_KEY
    },
    json={
        "text": input_text,
        "voice_id": neets_vits_voice_id,
        "params": {
        "model": "vits"
        }
    }
    )
    # save audio file
    audio_path = "neets_demo.mp3"
    with open(audio_path, "wb") as f:
        f.write(response.content)
    return audio_path

def groq_whisper_tts(filename):
    with open(filename, "rb") as file:
        transcriptions = groq_client.audio.transcriptions.create(
        file=(filename, file.read()), 
        model="whisper-large-v3-turbo",
        response_format="json", 
        temperature=0.0 
        )
    print("transcribed text:", transcriptions.text)
    print("********************************")
    return transcriptions.text


# setup gradio app theme    
theme = gr.themes.Base(
    primary_hue=gr.themes.colors.teal, 
    secondary_hue=gr.themes.colors.blue,
    neutral_hue=gr.themes.colors.gray,
    text_size=gr.themes.sizes.text_lg,
).set(
    # Primary Button Color
    button_primary_background_fill="#114A56",
    button_primary_background_fill_hover="#114A56",
    # Block Labels
    block_title_text_weight="600",
    block_label_text_weight="600",
    block_label_text_size="*text_md",
)


demo = gr.Blocks(theme=theme, analytics_enabled=False)

with demo:
    with gr.Row(variant="panel"):
        with gr.Column(scale=1):
            gr.Image("aya-expanse.png", elem_id="logo-img", show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False)
        with gr.Column(scale=30):
            gr.Markdown("""C4AI Aya Expanse is a state-of-art model with highly advanced capabilities to connect the world across languages. 
            <br/> 
            You can use this space to chat, speak and visualize with Aya Expanse in 23 languages. 
            
            **Developed by**: [Cohere for AI](https://cohere.com/research) and [Cohere](https://cohere.com/)
            """
            )
    
    with gr.TabItem("Chat with Aya") as chat_with_aya:
        cid = gr.State("")
        token = gr.State(value=None)

        with gr.Column():
            with gr.Row():
                chatbot = gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, height=300)
            
            with gr.Row():
                user_message = gr.Textbox(lines=1, placeholder="Ask anything in our 23 languages ...", label="Input", show_label=False)

        
            with gr.Row():
                submit_button = gr.Button("Submit",variant="primary")
                clear_button = gr.Button("Clear")

                            
            history = gr.State([])
            
            user_message.submit(fn=generate_aya_chat_response, inputs=[user_message, cid, token, history], outputs=[chatbot, history, cid], concurrency_limit=32)
            submit_button.click(fn=generate_aya_chat_response, inputs=[user_message, cid, token, history], outputs=[chatbot, history, cid], concurrency_limit=32)
            
            clear_button.click(fn=clear_chat, inputs=None, outputs=[chatbot, history, cid], concurrency_limit=32)

            user_message.submit(lambda x: gr.update(value=""), None, [user_message], queue=False)
            submit_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)
            clear_button.click(lambda x: gr.update(value=""), None, [user_message], queue=False)

            with gr.Row():
                gr.Examples(
                    examples=TEXT_CHAT_EXAMPLES,
                    inputs=user_message,
                    cache_examples=False,
                    fn=trigger_example,
                    outputs=[chatbot],
                    examples_per_page=25,
                    label="Load example prompt for:",
                    example_labels=TEXT_CHAT_EXAMPLES_LABELS,
                )

    # End to End Testing Pipeline for speak with Aya  
    with gr.TabItem("Speak with Aya") as speak_with_aya:
        
        with gr.Row():
            with gr.Column():
                e2e_audio_file = gr.Audio(sources="microphone", type="filepath", min_length=None)
                e2_audio_submit_button = gr.Button(value="Get Aya's Response", variant="primary")
                
                clear_button_microphone = gr.ClearButton()
                gr.Examples(
                    examples=AUDIO_EXAMPLES,
                    inputs=e2e_audio_file,
                    cache_examples=False,
                    examples_per_page=25,
                    label="Load example audio for:",
                    example_labels=AUDIO_EXAMPLES_LABELS,
                )
                                    
            with gr.Column():
                e2e_audio_file_trans = gr.Textbox(lines=3,label="Your Input", autoscroll=False, show_copy_button=True, interactive=False)
                e2e_audio_file_aya_response = gr.Textbox(lines=3,label="Aya's Response", show_copy_button=True, container=True, interactive=False)
                e2e_aya_audio_response = gr.Audio(type="filepath", label="Aya's Audio Response")
            
        # show_info = gr.Textbox(value="show_info", visible=False)
        # stt_model = gr.Textbox(value="groq_whisper", visible=False)

        with gr.Accordion("See Details", open=False):
            gr.Markdown("To enable voice interaction with Aya Expanse, this space uses [Whisper large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) and [Groq](https://groq.com/) for STT and [neets.ai](http://neets.ai/) for TTS.")
                    

    # Generate Images
    with gr.TabItem("Visualize with Aya") as visualize_with_aya:
        with gr.Row():
            with gr.Column():
                input_img_prompt = gr.Textbox(placeholder="Ask anything in our 23 languages ...", label="Describe an image", lines=3)
                # generated_img_desc = gr.Textbox(label="Image Description generated by Aya", interactive=False, lines=3, visible=False) 
                submit_button_img = gr.Button(value="Submit", variant="primary")
                clear_button_img = gr.ClearButton()
                
            
            with gr.Column():
                generated_img = gr.Image(label="Generated Image", interactive=False)

        with gr.Row():
            gr.Examples(
                examples=IMG_GEN_PROMPT_EXAMPLES,
                inputs=input_img_prompt,
                cache_examples=False,
                examples_per_page=25,
                label="Load example prompt for:",
                example_labels=IMG_GEN_PROMPT_EXAMPLES_LABELS
            )
            generated_img_desc = gr.Textbox(label="Image Description generated by Aya", interactive=False, lines=3, visible=False)
        
        # increase spacing between examples and Accordion components
        with gr.Row():
            pass
        with gr.Row():
            pass
        with gr.Row():
            pass

        with gr.Row():
            with gr.Accordion("See Details", open=False):
                gr.Markdown("This space uses Aya Expanse for translating multilingual prompts and generating detailed image descriptions and [Flux Schnell](https://huggingface.co/black-forest-labs/FLUX.1-schnell) for Image Generation.")
    
    # Image Generation
    clear_button_img.click(lambda: None, None, input_img_prompt)
    clear_button_img.click(lambda: None, None, generated_img_desc)
    clear_button_img.click(lambda: None, None, generated_img)

    submit_button_img.click(
        generate_img_prompt,
        inputs=[input_img_prompt],
        outputs=[generated_img_desc],
    )

    generated_img_desc.change(
        generate_image, #run_flux,
        inputs=[generated_img_desc],
        outputs=[generated_img],
        show_progress="full",
    )

   # Audio Pipeline
    clear_button_microphone.click(lambda: None, None, e2e_audio_file)
    clear_button_microphone.click(lambda: None, None, e2e_aya_audio_response)
    clear_button_microphone.click(lambda: None, None, e2e_audio_file_aya_response)
    clear_button_microphone.click(lambda: None, None, e2e_audio_file_trans)

    #e2e_audio_file.change(
    e2_audio_submit_button.click(
        transcribe_and_stream,
        inputs=[e2e_audio_file],
        outputs=[e2e_audio_file_trans],
        show_progress="full",
    ).then(
        aya_speech_text_response,
        inputs=[e2e_audio_file_trans],
        outputs=[e2e_audio_file_aya_response],
        show_progress="full",
    ).then(
        convert_text_to_speech,
        inputs=[e2e_audio_file_aya_response],
        outputs=[e2e_aya_audio_response],
        show_progress="full",
    )
    
    demo.load(lambda: secrets.token_hex(16), None, token)

demo.queue(api_open=False, max_size=20, default_concurrency_limit=4).launch(show_api=False, allowed_paths=['/home/user/app'])