File size: 7,211 Bytes
b37a5cd
 
 
a0737f2
f37c2ef
b37a5cd
 
 
 
 
 
 
a4849de
b37a5cd
6fe7bd1
a0737f2
3b93f52
 
6fe7bd1
 
f37c2ef
b37a5cd
8439d1b
 
b37a5cd
 
 
 
 
 
 
 
f37c2ef
dcd59a4
b37a5cd
 
6fe7bd1
 
e904acf
365894c
e904acf
 
b37a5cd
 
 
 
 
 
 
 
 
 
152ba24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d82aade
b37a5cd
 
 
 
 
 
 
 
 
 
 
 
6fe7bd1
b37a5cd
f0b62b5
b37a5cd
6fe7bd1
 
e904acf
6fe7bd1
 
 
 
e904acf
6fe7bd1
 
848ca01
50c190e
31b3603
 
50c190e
 
6fe7bd1
 
b37a5cd
 
 
848ca01
 
 
a4849de
 
 
 
 
 
 
 
152ba24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b37a5cd
 
 
 
f0b62b5
b37a5cd
 
 
 
 
 
 
 
 
 
 
152ba24
365894c
848ca01
b37a5cd
 
 
 
 
c522abc
b37a5cd
 
 
27f88e4
b37a5cd
c522abc
b37a5cd
 
 
 
258da0e
cc47388
258da0e
b37a5cd
365894c
b37a5cd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import logging
from typing import Any, List, Mapping, Optional
from langchain.llms import HuggingFaceHub
from gradio_client import Client
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
import streamlit as st
from pytube import YouTube
# import replicate





models = '''| Model | Llama2 | Llama2-hf | Llama2-chat | Llama2-chat-hf |
|---|---|---|---|---|
| 70B | [Link](https://huggingface.co/meta-llama/Llama-2-70b) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-hf) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-chat) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) |
---'''


DESCRIPTION = """
Welcome to the **YouTube Video Chatbot** powered by the state-of-the-art Llama-2-70b model. Here's what you can do:
- **Transcribe & Understand**: Provide any YouTube video URL, and our system will transcribe it. Our advanced NLP model will then understand the content, ready to answer your questions.
- **Ask Anything**: Based on the video's content, ask any question, and get instant, context-aware answers.
To get started, simply paste a YouTube video URL in the sidebar and start chatting with the model about the video's content. Enjoy the experience!
"""
st.title("YouTube Video Chatbot")
st.markdown(DESCRIPTION)

def get_video_title(youtube_url: str) -> str:
    yt = YouTube(youtube_url)
    embed_url = f"https://www.youtube.com/embed/{yt.video_id}"
    embed_html = f'<iframe  src="{embed_url}" frameborder="0" allowfullscreen></iframe>'
    return yt.title, embed_html


def transcribe_video(youtube_url: str, path: str) -> List[Document]:
    """
    Transcribe a video and return its content as a Document.
    """
    logging.info(f"Transcribing video: {youtube_url}")
    client = Client("https://sanchit-gandhi-whisper-jax.hf.space/")
    result = client.predict(youtube_url, "translate", True, fn_index=7)
    return [Document(page_content=result[1], metadata=dict(page=1))]

def predict(message: str, system_prompt: str = '', temperature: float = 0.7, max_new_tokens: int = 4096,
            topp: float = 0.5, repetition_penalty: float = 1.2) -> Any:
    """
    Predict a response using a client.
    """
    client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/--replicas/xwjz8/")
    response = client.predict(
        message,
        system_prompt,
        temperature,
        max_new_tokens,
        topp,
        repetition_penalty,
        api_name="/chat_1"
    )
    return response

PATH = os.path.join(os.path.expanduser("~"), "Data")

def initialize_session_state():
    if "youtube_url" not in st.session_state:
        st.session_state.youtube_url = ""
    if "setup_done" not in st.session_state:  # Initialize the setup_done flag
        st.session_state.setup_done = False
    if "doneYoutubeurl" not in st.session_state:
        st.session_state.doneYoutubeurl = ""

def sidebar():
    with st.sidebar:
        st.markdown("Enter the YouTube Video URL belowπŸ”—\n")
        st.session_state.youtube_url = st.text_input("YouTube Video URL:")


        if st.session_state.youtube_url:
            # Get the video title
            video_title, embed_html = get_video_title(st.session_state.youtube_url)
            st.markdown(f"### {video_title}")

            # Embed the video
            st.markdown(
                embed_html,
                unsafe_allow_html=True
            )
            
        # system_promptSide = st.text_input("Optional system prompt:")
        # temperatureSide = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05)
        # max_new_tokensSide = st.slider("Max new tokens", min_value=0.0, max_value=4096.0, value=4096.0, step=64.0)
        # ToppSide = st.slider("Top-p (nucleus sampling)", min_value=0.0, max_value=1.0, value=0.6, step=0.05)
        # RepetitionpenaltySide = st.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.05)


sidebar()
initialize_session_state()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-l6-v2")

prompt = PromptTemplate(
    template="""Given the context about a video. Answer the user in a friendly and precise manner.
    Context: {context}
    Human: {question}
    AI:""",
    input_variables=["context", "question"]
)

class LlamaLLM(LLM):
    """
    Custom LLM class.
    """

    @property
    def _llm_type(self) -> str:
        return "custom"

    def _call(self, prompt: str, stop: Optional[List[str]] = None,
              run_manager: Optional[CallbackManagerForLLMRun] = None) -> str:
        response = predict(prompt)
        return response

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {}


# Check if a new YouTube URL is provided
if st.session_state.youtube_url != st.session_state.doneYoutubeurl:
    st.session_state.setup_done = False

if st.session_state.youtube_url and not st.session_state.setup_done :
    with st.status("Transcribing video..."):
      data = transcribe_video(st.session_state.youtube_url, PATH)
    
    with st.status("Running Embeddings..."):
      docs = text_splitter.split_documents(data)

      docsearch = FAISS.from_documents(docs, embeddings)
      retriever = docsearch.as_retriever()
      retriever.search_kwargs['distance_metric'] = 'cos'
      retriever.search_kwargs['k'] = 4
    with st.status("Running RetrievalQA..."):
      llama_instance = LlamaLLM()
      st.session_state.qa = RetrievalQA.from_chain_type(llm=llama_instance, chain_type="stuff", retriever=retriever,chain_type_kwargs={"prompt": prompt})
        
    st.session_state.doneYoutubeurl = st.session_state.youtube_url
    st.session_state.setup_done = True  # Mark the setup as done for this URL

if "messages" not in st.session_state:
  st.session_state.messages = []

for message in st.session_state.messages:
    with st.chat_message(message["role"], avatar=("πŸ§‘β€πŸ’»" if message["role"] == 'human' else 'πŸ¦™')):
        st.markdown(message["content"])

textinput = st.chat_input("Ask LLama-2-70b anything about the video...") 

if prompt := textinput:
  st.chat_message("human",avatar = "πŸ§‘β€πŸ’»").markdown(prompt)
  st.session_state.messages.append({"role": "human", "content": prompt})
  with st.status("Requesting Client..."):
    video_title, _ = get_video_title(st.session_state.youtube_url)
    additional_context = f"Given the context about a video titled '{video_title}' available at '{st.session_state.youtube_url}'."
    response = st.session_state.qa.run( prompt+ " " + additional_context)
  with st.chat_message("assistant", avatar='πŸ¦™'):
      st.markdown(response)
  # Add assistant response to chat history
  st.session_state.messages.append({"role": "assistant", "content": response})