File size: 5,476 Bytes
ac1af52
 
 
 
bd6d025
ac1af52
 
 
 
 
 
 
 
 
 
 
 
 
da69772
 
 
 
 
 
 
 
 
 
ac1af52
 
 
 
 
 
 
 
 
 
 
 
 
 
da69772
 
 
 
 
 
ac1af52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd6d025
 
ac1af52
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import llama_cpp
import llama_cpp.llama_tokenizer
from llama_cpp import Llama

import gradio as gr
from loguru import logger
import psutil
from ctransformers import AutoModelForCausalLM,AutoTokenizer


prompt_template = """[INST] <<SYS>>
You are a helpful assistant for a crowdfunding platform called GiveSendGo. Your goal is to gather essential information for campaign and generate a title and sample pitch of atleast 1000 words for the campaign.
<</SYS>> 

{question} [/INST]
"""

model_loc = "models/llama-2-13b-chat.Q5_K_M.gguf"
model_loc = "TheBloke/Llama-2-13B-chat-GGUF"

llama = AutoModelForCausalLM.from_pretrained(
    model_loc,
    model_type="llama",
    context_length=4096,
    max_new_tokens=2048,
    hf=True
    # threads=cpu_count,
)


# llama = llama_cpp.Llama.from_pretrained(
#     #repo_id="Qwen/Qwen1.5-0.5B-Chat-GGUF",
#     #filename="*q8_0.gguf",
#     mode_path=model_loc,
#     model_type="llama",
#     context_length=4096,
#     max_new_tokens=2048,
#     filename="llama-2-13b-chat.Q5_K_M.gguf",
#     tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B"),
#     verbose=False
# )

# llama = Llama(
# model_path=model_loc,
# max_tokens=4096,
# n_ctx=4096,
# verbose=False,
# )

_ = [elm for elm in prompt_template.splitlines() if elm.strip()]
stop_string = [elm.split(":")[0] + ":" for elm in _][-2]

logger.debug(f"{stop_string=}")

_ = psutil.cpu_count(logical=False) - 1
cpu_count: int = int(_) if _ else 1
logger.debug(f"{cpu_count=}")



model = "gpt-3.5-turbo"

def predict(message, history):
    messages = []
    prompt = prompt_template.format(question=message)

    for user_message, assistant_message in history:
        messages.append({"role": "system", "content": prompt},)
        messages.append({"role": "user", "content": user_message})
        messages.append({"role": "assistant", "content": assistant_message})
    
        messages.append({"role": "user", "content": message})

    response = llama.create_chat_completion_openai_v1(
        model=model,
        messages=messages,
        response_format={
        "type": "json_object",
            "schema": {
                "type": "object",
                "properties": {"title": {"type": "string"},
                               #"description": {"type": "string"},
                               "sample_pitch": {"type": "string"},
                               "amount": {"type": "string"},
                               "location": {"type": "string"}},
                "required": ["title","sample_pitch","amount","location"], #description
            },
        },
        temperature=0.7,
        stream=True
    )

    text = ""
    for chunk in response:
        content = chunk.choices[0].delta.content
        if content:
            text += content
            yield text


def generate(message):
    
    try:
        messages = []
        prompt = prompt_template.format(question=message)

        #for user_message, assistant_message in history:
        messages.append({"role": "system", "content": prompt},)
        #messages.append({"role": "user", "content": user_message})
        #messages.append({"role": "assistant", "content": assistant_message})
        
        messages.append({"role": "user", "content": message})

        response = llama.create_chat_completion_openai_v1(
            model=model,
            messages=messages,
            response_format={
            "type": "json_object",
                "schema": {
                    "type": "object",
                    "properties": {"title": {"type": "string"},
                                #"description": {"type": "string"},
                                "sample_pitch": {"type": "string"},
                                "amount": {"type": "string"},
                                "location": {"type": "string"}},
                    "required": ["title","sample_pitch","amount","location"], #description
                },
            },
            temperature=0.7,
            stream=False)

        # text = ""
        # for chunk in response:
        #     content = chunk.choices[0].delta.content
        #     if content:
        #         text += content
        #         logger.debug(f"api: {content=}")

        #         yield text
        
        logger.debug(f"{response}")

        return response.choices[0].delta.content
                

    except Exception as exc:
        logger.error(exc)
        response = f"{exc=}"
    

def predict_api(message):
    logger.debug(f"{message=}")
    text = generate(message)
    logger.debug(f"text::{text=}")
            
    return f"json: {text=}"



js = """function () {
  gradioURL = window.location.href
  if (!gradioURL.endsWith('?__theme=dark')) {
    window.location.replace(gradioURL + '?__theme=dark');
  }
}"""

css = """
footer {
    visibility: hidden;
}
full-height {
    height: 100%;
}
"""

with gr.Blocks(theme=gr.themes.Soft(), js=js, css=css) as demo:
    gr.ChatInterface(predict, examples=["What is the capital of France?", "Who was the first person on the moon?"])

    with gr.Accordion("For Chat/Translation API", open=False, visible=False):
        input_text = gr.Text()
        api_btn = gr.Button("Go", variant="primary")
        out_text = gr.Text()

    api_btn.click(
        predict_api,
        input_text,
        out_text,
        api_name="api",
    )


if __name__ == "__main__":
    demo.queue().launch(debug=True, share=True)