Spaces:
Running
Running
IProject-10
commited on
Upload 2 files
Browse files- app.py +125 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from rank_bm25 import BM25Okapi
|
3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering
|
4 |
+
import torch
|
5 |
+
import gradio as gr
|
6 |
+
from docx import Document
|
7 |
+
import pdfplumber
|
8 |
+
|
9 |
+
# Load the fine-tuned BERT-based QA model and tokenizer
|
10 |
+
model_name = "IProject-10/roberta-base-finetuned-squad2" # Replace with your model name
|
11 |
+
qa_model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
|
14 |
+
# Set up the device for BERT
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
qa_model.to(device)
|
17 |
+
qa_model.eval()
|
18 |
+
|
19 |
+
# Create a pipeline for retrieval-augmented QA
|
20 |
+
retrieval_qa_pipeline = pipeline(
|
21 |
+
"question-answering",
|
22 |
+
model=qa_model,
|
23 |
+
tokenizer=tokenizer,
|
24 |
+
device=device.index if torch.cuda.is_available() else -1
|
25 |
+
)
|
26 |
+
|
27 |
+
def extract_text_from_file(file):
|
28 |
+
# Determine the file extension
|
29 |
+
file_extension = os.path.splitext(file.name)[1].lower()
|
30 |
+
text = ""
|
31 |
+
|
32 |
+
try:
|
33 |
+
if file_extension == ".txt":
|
34 |
+
with open(file.name, "r") as f:
|
35 |
+
text = f.read()
|
36 |
+
elif file_extension == ".docx":
|
37 |
+
doc = Document(file.name)
|
38 |
+
for para in doc.paragraphs:
|
39 |
+
text += para.text + "\n"
|
40 |
+
elif file_extension == ".pdf":
|
41 |
+
with pdfplumber.open(file.name) as pdf:
|
42 |
+
for page in pdf.pages:
|
43 |
+
text += page.extract_text() + "\n"
|
44 |
+
else:
|
45 |
+
raise ValueError("Unsupported file format: {}".format(file_extension))
|
46 |
+
except Exception as e:
|
47 |
+
text = str(e)
|
48 |
+
return text
|
49 |
+
|
50 |
+
def load_passages(files):
|
51 |
+
passages = []
|
52 |
+
for file in files:
|
53 |
+
passage = extract_text_from_file(file)
|
54 |
+
passages.append(passage)
|
55 |
+
return passages
|
56 |
+
|
57 |
+
def highlight_answer(context, answer):
|
58 |
+
start_index = context.find(answer)
|
59 |
+
if start_index != -1:
|
60 |
+
end_index = start_index + len(answer)
|
61 |
+
highlighted_context = f"{context[:start_index]}_________<<{context[start_index:end_index]}>>_________{context[end_index:]}"
|
62 |
+
return highlighted_context
|
63 |
+
else:
|
64 |
+
return context
|
65 |
+
|
66 |
+
def answer_question(question, files):
|
67 |
+
try:
|
68 |
+
# Load passages from the uploaded files
|
69 |
+
passages = load_passages(files)
|
70 |
+
|
71 |
+
# Create an index using BM25
|
72 |
+
bm25 = BM25Okapi([passage.split() for passage in passages])
|
73 |
+
|
74 |
+
# Retrieve relevant passages using BM25
|
75 |
+
tokenized_query = question.split()
|
76 |
+
candidate_passages = bm25.get_top_n(tokenized_query, passages, n=3)
|
77 |
+
bm25_scores = bm25.get_scores(tokenized_query)
|
78 |
+
|
79 |
+
# Extract answer using the pipeline for each candidate passage
|
80 |
+
answers_with_context = []
|
81 |
+
for passage in candidate_passages:
|
82 |
+
answer = retrieval_qa_pipeline(question=question, context=passage)
|
83 |
+
bm25_score = bm25_scores[passages.index(passage)]
|
84 |
+
answer_with_context = {
|
85 |
+
"context": passage,
|
86 |
+
"answer": answer["answer"],
|
87 |
+
"BM25-score": bm25_score # BM25 confidence score for this passage
|
88 |
+
}
|
89 |
+
answers_with_context.append(answer_with_context)
|
90 |
+
|
91 |
+
# Choose the answer with the highest model confidence score
|
92 |
+
best_answer = max(answers_with_context, key=lambda x: x["BM25-score"])
|
93 |
+
|
94 |
+
# Highlight the answer in the context
|
95 |
+
highlighted_context = highlight_answer(best_answer["context"], best_answer["answer"])
|
96 |
+
|
97 |
+
return best_answer["answer"], highlighted_context, best_answer["BM25-score"]
|
98 |
+
except Exception as e:
|
99 |
+
return str(e), "", ""
|
100 |
+
|
101 |
+
# Define Gradio interface
|
102 |
+
iface = gr.Interface(
|
103 |
+
fn=answer_question,
|
104 |
+
inputs=[
|
105 |
+
gr.Textbox(lines=2, placeholder="Enter your question here...", label="Question"),
|
106 |
+
gr.Files(label="Upload text, Word, or PDF files")
|
107 |
+
],
|
108 |
+
outputs=[
|
109 |
+
gr.Textbox(label="Answer"),
|
110 |
+
gr.Textbox(label="Context"),
|
111 |
+
gr.Textbox(label="BM25 Score")
|
112 |
+
],
|
113 |
+
title="Question Answering Model",
|
114 |
+
description="Upload a text document and ask a question from the content",
|
115 |
+
css="""
|
116 |
+
.container { max-width: 800px; margin: auto; }
|
117 |
+
.interface-title { font-family: Arial, sans-serif; font-size: 24px; font-weight: bold; }
|
118 |
+
.interface-description { font-family: Arial, sans-serif; font-size: 16px; margin-bottom: 20px; }
|
119 |
+
.input-textbox, .output-textbox { font-family: Arial, sans-serif; font-size: 14px; }
|
120 |
+
.error { color: red; font-family: Arial, sans-serif; font-size: 14px; }
|
121 |
+
"""
|
122 |
+
)
|
123 |
+
|
124 |
+
# Launch the interface
|
125 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
gradio
|
5 |
+
python-docx
|
6 |
+
pdfplumber
|
7 |
+
rank-bm25
|
8 |
+
|